TIDAL CURRENT ANALYSIS PROCEDURES AND ASSOCIATED COMPUTER PROGRAMS

Silver Spring, Maryland
March 1999

n02 ${ }_{\text {National Oceanic and Atmospheric Administration }}$
U.S. DEPARTMENT OF COMMERCE

National Ocean Service
Center for Operational Oceanographic Products and Services
Products and Services Division

Center for Operational Oceanographic Products and Services National Ocean Service National Oceanic and Atmospheric Administration U.S. Department of Commerce

Abstract

The National Ocean Service (NOS) Center for Operational Oceanographic Products and Services (CO-OPS) collects and distributes observations and predictions of water levels and currents to ensure safe, efficient and environmentally sound maritime commerce. The Center provides the set of water level and coastal current products required to support NOS' Strategic Plan mission requirements, and to assist in providing operational oceanographic data/products required by NOAA's other Strategic Plan themes. For example, CO-OPS provides data and products required by the National Weather Service to meet its flood and tsunami warning responsibilities. The Center manages the National Water Level Observation Network (NWLON), and a national network of Physical Oceanographic Real-Time Systems (PORTS) in major U.S. harbors. The Center: establishes standards for the collection and processing of water level and current data; collects and documents user requirements which serve as the foundation for all resulting program activities; designs new and/or improved oceanographic observing systems; designs software to improve COOPS' data processing capabilities; maintains and operates oceanographic observing systems; performs operational data analysis/quality control; and produces/disseminates oceanographic products.

TIDAL CURRENT ANALYSIS PROCEDURES AND ASSOCIATED COMPUTER PROGRAMS

Chris Zervas

n〇2 National Oceanic And Atmospheric Administration

National Oceanic and
Atmospheric Administration
D. James Baker, Under Secretary

National Ocean Service Nancy Foster, Assistant Administrator

TABLE OF CONTENTS

1. TIDAL CURRENT ANALYSIS PROCEDURE 1
1.1. Introduction 1
1.2. Comparison of Tidal and Tidal Current Analysis 1
1.3. Calculation of Tidal Current Parameters 4
1.4. Reference and Subordinate Stations 4
1.5. Tidal Current Analysis Procedure for All Stations 8
1.6. Tidal Current Analysis Procedure for Subordinate Stations 11
2. LSQHA: THE LEAST SQUARES HARMONIC ANALYSIS PROGRAM 13
2.1. Introduction 13
2.2. Explanation of the Control File 22
2.3. Sample Control File for Multiple Deployments 25
2.4. Output Files 26
3. HARM29 AND HARM15: THE FOURIER HARMONIC ANALYSIS PROGRAMS 29
3.1. Introduction 29
3.2. Explanation of the Control File 31
3.3. Sample Control Files and Output Files 33
4. PRED: THE TIDAL PREDICTION AND DETIDING PROGRAM 39
4.1. Introduction 39
4.2. Tidal Prediction 40
4.3. Detiding a Time Series 43
5. GI AND GIPLOT: THE GREENWICH INTERVAL PROGRAMS 51
5.1. Introduction 51
5.2. Creating Plots 52
6. REVRED: THE REVERSING REDUCTION PROGRAM 63
6.1. Introduction 64
6.2. Input Parameters and Program Algorithm 64
7. ROTARY: THE ROTARY REDUCTION PROGRAM 77
7.1. Introduction 77
7.2. Program Algorithm 77
7.3. Explanation of the Control File 79
7.4. Sample Input and Output Files 80
8. UTILITY PROGRAMS 87
8.1. Calculation of the Principal Current Direction 87
8.2. Finding Gaps in a Time Series 90
8.3. Averaging Multiple Sets of Tidal Constituents 91
8.4. NCP2: The Reversing Current Predictions Program 93
8.5. NTP4: The Tide Predictions Program 94
8.6. Converting the Format of Tidal Current Constituents 95
ACKNOWLEDGMENTS 99
REFERENCES 101

1. TIDAL CURRENT ANALYSIS PROCEDURE

1.1. Introduction

The National Ocean Service (NOS) has been charged with producing tidal current tables for the coastal areas of the United States. Tidal currents are almost always the strongest current experienced by vessels operating offshore and for considerable distances inside of bays and river estuaries. Tidal currents are usually fastest where water level fluctuations on wide continental shelfs are amplified as they approach the coast and water is forced through a narrow constricted channel into a large bay or estuary.

Knowledge of the timing and strength of tidal currents is extremely important for safe navigation in coastal waters. Mariners are primarily interested in the timing and strength of four phases of the tidal current cycle which are printed in the NOS Tidal Current Tables. These phases are slack before flood (SBF), maximum flood current (MFC), slack before ebb (SBE), and maximum ebb current (MEC). Two other phases are also included in the NOS Tidal Current Tables. These are minimum currents between two successive maximum currents in the same direction and are known as slack flood current (SFC) and slack ebb current (SEC).

Although a standardized procedure has developed for analyzing water level data to obtain the parameters required to produce the NOS Tide Tables, there has not been such a procedure developed for tidal currents. This publication sets forth a suggested step-by-step procedure to follow for obtaining the parameters needed to produce the NOS Tidal Current Tables. This is followed by detailed explanations of each of the computer programs used. These sections are designed to be stand-alone user's guides for each of the programs, giving a complete explanation of how the calculations are carried out, options to be set by the user, and sample input and output files. Table A indicates the inputs and outputs for the major programs used in the analysis of tidal currents. All the programs are written in FORTRAN.

1.2. Comparison of Tidal and Tidal Current Analysis

Tides and tidal currents are driven by the gravitational forces of the sun and the moon acting on the earth's oceans. The rotation of the earth causes the cyclical rise and fall of the ocean levels on a daily (diurnal) and half-daily (semidiurnal) basis. Variations in the relative positions of the earth, moon, and sun cause fluctuations in the strength of the astronomical forcing. Tides and tidal currents are predictable far into the future due to the predictability of the astronomical forcing. These forces are expressed as the tidal potential which consists of a limited number of discrete frequencies whose amplitudes and phases are well known at any time. However, the tidal signal at any point in the world has been affected by the bathymetry of the oceans, seas, bays, and river estuaries as the tidal forces are transmitted and modified by fluid dynamic forces. The frequencies are unchanged but the amplitudes and phases of each frequency or tidal constituent has been changed by varying amounts.

Inputs	Program	Outputs
Current Speeds and Directions	PRCMP	Mean Current Principal Current Direction Major and Minor Axis Variance
Current Speeds and Directions Principal Current Direction	LSQHA	Tidal Constituents Mean Current
Current Speeds and Directions Principal Current Direction	HARM29 HARM15	Tidal Constituents Mean Current
Multiple Tidal Constituents Mean Currents	AVCONS	Averaged Tidal Constituents Averaged Mean Current
Tidal Constituents Mean Current (Observed Speeds and Directions)	PRED	Predicted Speeds and Directions (Detided Speeds and Directions)
Current Speeds and Directions Principal Current Direction	GI	Mean Greenwich Intervals, Speeds, and Directions of Floods, Ebbs, and Slacks
Tidal Constituents (major axis) Mean Current (major axis)	NCP2	Predicted Times and Speeds of Floods, Ebbs, and Slacks
Reference Station Predicted Floods, Ebbs, Slacks, and Greenwich Intervals Subordinate Station Current Speeds and Directions	REVRED	Subordinate Station Greenwich Intervals, Speeds, and Directions for Floods, Ebbs, and Slacks Mean Time Differences and Speed Ratios
Reference Station Predicted Floods, Ebbs, Slacks, and Greenwich Intervals Subordinate Station Current Speeds and Directions	ROTARY	Subordinate Station Mean Current, Greenwich Intervals, Speeds, and Directions for Floods, Ebbs, and Slacks, and Complete Mean Tidal Cycle
Station Name, Location, Depth, Tidal Constituents, Greenwich Intervals, Speeds, and Directions for Floods, Ebbs, and Slacks	CONVERT	Reformatted Station Name, Location, Depth, Tidal Constituents, Greenwich Intervals, Speeds, and Directions for Floods, Ebbs, and Slacks

To be able to accurately predict the tides or tidal currents at any point, the amplitudes and the phases of the strongest tidal constituents which have propagated to that point must be determined. This is done by recording the tidal signal at that point for a long enough period of time to be able to resolve the amplitudes and phases of the major tidal constituents. Two tidal constituents which are close together in frequency can be resolved by a period of observation greater than their synodic period, which is the length of time in which the higher frequency completes exactly one more cycle than the lower frequency. Once the tidal constituents are known, the tidal signal at that point can be predicted indefinitely into the future provided that there are no major changes to the bathymetry in the vicinity of that location.

The tidal analysis of currents differs in several ways from the tidal analysis of water levels. The main difference is that water level observations are a scalar time series whereas current observations are a vector time series. For water levels, only the height of the water is measured, whereas for currents, the speed and the direction of the current must be recorded. The directional aspect of a current time series can best be seen in a polar plot of the data (Figures 1 and 2). Individual data points are plotted on a (u, v) coordinate system with u as the eastward velocity and v as the northward velocity. The resulting scatter plot can take many different forms and is primarily controlled by the bathymetric features in the vicinity of the location where the measurements were made.

Tidal currents can be categorized as reversing or rotary. A reversing current flows primarily in two opposite directions (flood and ebb) with a slack period of near zero flow when the current direction reverses (Figures 1 and 3). A rotary current continually changes direction during the tidal cycle without a narrowly defined flood or ebb direction (Figures 2 and 4). Rotary currents are usually present offshore on the continental shelf or in the deep ocean. Reversing currents are usually present in bays or estuaries where bathymetry and boundary geometry restrict the direction of flow. Complicated shorelines can result in flood and ebb current directions not being 180° apart.

Another difference between water levels and currents is that currents have a natural zero level occurring when no current is flowing. Measured water levels must always be referenced to a datum, usually based on a long series of observations for a specified period, whereas the measured currents are the absolute current speed. A pure tidal current time series, which is a summation of sine waves, will eventually average to zero. However most measured current time series will have a nonzero mean current. If current predictions are to be made for another time period, it must be determined if the measured nonzero mean current is a "permanent" current (i.e. always present). The timing of slack periods and the strength of floods and ebbs are affected by the presence of a permanent current.

Observed mean currents can be due to different causes depending on the location of the instrument. In rivers, there is an overall current in the ebb direction. However, river flowrates can vary by an order of magnitude during the course of a year. In constricted channels or near manmade structures, the current pattern during flood and ebb periods may be very different leading to tidally-induced residual currents. Estuarine circulation, which involves the exchange of salty ocean water with fresh river water, can lead to a nontidal mean current into the estuary
near the bottom and out of the estuary near the surface. Offshore on the continental shelf, ocean currents of various magnitudes and time scales can contribute to the measured mean current. Therefore, it is often uncertain if the measured mean current is a "permanent" current and, if it is, whether it is similar at nearby locations.

1.3. Calculation of Tidal Current Parameters

The first step in analyzing a tidal current is to determine whether the current is reversing or rotary. If the current is reversing, the principal current direction is obtained by the program premp. The current can then be separated into a major and a minor component with most of the current variance along the major or principal current direction. For a rotary current, the major component variance may not be much greater than the minor component variance or a strong nontidal signal can obscure the principal current direction of the tidal signal.

The tidal constituents are obtained from observed data by a process known as harmonic analysis. The tidal constituents consist of an amplitude and phase for each tidal frequency. Some of these constituents may be set to zero if the data is not sufficient to determine the constituents accurately. Two sets of tidal constituents will be obtained. The first will be along the major axis and the second along the minor axis. For a reversing current, the major axis will be the principal current direction. For a rotary current, the major axis is set to 0° (north). Different harmonic analysis programs are recommended depending on the length of the observed time series. If there are more than 180 days of data, the program Isqha should be used. If there are between 29 and 180 days of data, the program harm 29 can be used one or more times. If there are between 15 and 29 days of data, the program harm 15 is used. The program avcons is used to average multiple sets of tidal constituents. If there are less than 15 days of data, tidal constituents cannot be obtained by harmonic analysis.

The Greenwich intervals for SBF, MFC, SBE, and MEC are the mean time between the moon's transit over the Greenwich meridian at 0° longitude and the arrival of the tidal phase at the station. This is a standard way of comparing the timing of tidal phases between stations anywhere in the world. The mean speeds and directions for the tidal phases are also calculated. The recommended procedure is to use the program pred to predict the tidal current for an entire year and then use the program gi to obtain the mean Greenwich intervals, speeds, and directions. The program convert can then be used to combine all the relevant information calculated for each station into an easy-to-read tabular format.

1.4. Reference and Subordinate Stations

All tidal current stations are listed in the NOS Tidal Current Tables as either a reference station or a subordinate station. A yearly listing of the tables can only give the floods, ebbs, and slacks of a limited number of stations known as the reference stations. A reference station is usually located at the entrance to a major bay or river estuary and always has a reversing current. In the 1999 NOS Tidal Current Tables, there were 60 reference stations which are listed in the section known as Table 1. The times of the SBF, MFC, SBE, MEC, SFC, and SEC phases are given to the nearest minute and the velocities of the MFC, MEC, SFC, and SEC phases are given to the
nearest tenth of a knot. If a maximum current speed is less than 0.25 knots, it is labeled in the tables as "current weak and variable" and the slack times before and after are not printed. Tidal constituents for a reference station should be obtained from at least 180 days of current data, although many of the older established reference station constituents were obtained from much shorter data sets. The program ncp2 is used for the routine prediction of the daily floods, ebbs, and slacks of a reference station current.

If a station has a reversing current, is near a reference station, and has a similar tidal cycle, it is listed as a subordinate station in Table 2 of the NOS Tidal Current Tables. Table 2 is used to relate the printed times of SBF, MFC, SBE, and MEC and speeds of MFC and MEC of the reference station to those of the subordinate station. Table 2 lists the subordinate station time differences and speed ratios, along with station depth and position. It also gives the average speeds and directions of SBF, MFC, SBE, and MEC for the subordinate station. The Table 2 parameters for some older subordinate stations have been established from as little as one day of current measurements. If there are more than 15 days of observed data, tidal constituents can be obtained for the subordinate station and a whole year of predicted currents can be used to establish the Table 2 parameters. The program revred is used to relate a reversing current to a reference station.

If a station has a rotary current, is near a reference station, and has a similar tidal cycle, it is listed as a subordinate station in Table 5 of the NOS Tidal Current Tables. Table 5 is used to obtain the mean speed and direction of the subordinate station current for 0 to 12 hours after a specified tidal phase (usually flood) at the reference station. If there are more than 15 days of observed data, tidal constituents can be obtained for the subordinate station and a whole year of predicted currents can be used to establish the Table 5 parameters. The program rotary is used to relate a rotary current to a reference station.

Figure 3. Plot of east-west and north-south current components for a typical reversing current over many tidal cycles.

Figure 4. Plot of east-west and north-south current components for a typical rotary current over many tidal cycles.

Figure 5. Current speed for a typical reversing current. MFC=Maximum Flood Current, MEC=Maximum Ebb Current, SBF=Slack Before Flood, SBE=Slack Before Ebb.

Figure 6. Current speed for a typical rotary current.

1.5. Tidal Current Analysis Procedure for All Stations

A1. Put the current data into a free-format three-column ASCII file as: Time, Current Speed, Current Direction. The time should be in Julian Days specified to the nearest minute (at least four decimal places) and should be the time for the middle of the sampling period.

A2. Plot the speed and direction versus time to check for bad data and delete all bad data. Carefully check the beginning and end of the time series, where the speeds may be within the normal range of the data, but the instrument may be out of the water.

A3. Determine the principal current direction by running the program premp. If the principal current direction is in the ebb direction, add or subtract 180° to put it in the flood direction.

If the minor axis variance is greater than 20%, the principal current direction is not well defined and the harmonic analysis to be carried out in step A6 should be along 0°.

For multiple deployments, run prcmp once for each deployment and average the individual principal current directions (in the flood direction). Small changes in instrument location can give differing principal current directions.

Premp will also print the mean current and indicate when the mean current is not significant (i.e. if both the 95% confidence intervals include zero).

A4. Find the first and last data point, the lengths of any gaps in the data, and the number of continuous data points by running the program gap. If there are several deployments, concatenate all the data together chronologically into one file before running gap. The output file gaps is useful in setting up the control files for harmonic analysis.

A5. Determine the type of harmonic analysis procedure to use based on the data set available.
If there are more than 180 days of data (continuous or with gaps), use the least squares harmonic analysis program Isqha. The continuous data option (INDATA=1) can be used if there are a limited number of blocks of continuous data (fewer than 20). If there are many small gaps, use the randomly-spaced data option (INDATA=2) which will take longer to run.

If there are between 29 and 180 days of data, use the 29-day Fourier harmonic analysis program harm29 on one or more 29-day segments of continuous data.

If there are between 15 and 29 days of continuous data, use the 15-day harmonic analysis program harm15.

If there are less than 15 days of continuous data, the tidal constituents cannot be derived, but the station can be characterized as a subordinate station and related to a reference station by using the programs revred or rotary (see Section 1.6).

A6. Carry out the harmonic analysis procedure with Isqha, harm29, or harm15 to obtain one or more sets of tidal constituents. For multiple deployments, perform the harmonic analyses along the individual principal current direction (flood direction) specified for each deployment. However, for poorly defined principal current directions (if premp gave minor axis variances greater than 20% in step A3), perform the harmonic analyses along 0°. If Isqha is used, do not solve for the long term constituents Mf, Msf, Mm, Ssa, and Sa . These constituents cannot be determined accurately from only a year of data. If the mean current was not significant (from premp results in step A3), set the mean current to zero in the tidal constituents output file cons.out.

A7. For multiple sets of tidal constituents at one station, concatenate all the cons.out files together and use avcons to average the constituents. If the mean currents were not significant (from premp results in step A3), set the mean current to zero in the average tidal constituents file.

A8. Detide the observed time series using the program pred. Pred will have to be run separately to detide data from different years. Plot the detided time series to check if the tidal constituents are good. This can turn up any time zone errors in the constituents. The end of the pred output file shows the root mean square, mean, and standard deviation of the observed, predicted, and residual time series.

A9. Predict tidal currents for a whole year using the program pred. Choose a year that is near one quarter or three quarters of the 18.6 year epoch corresponding to the variation in the obliquity of the moon's orbit. These years are determined by looking for nodal factors closest to 1.0 in Table 14 of the "Manual of Harmonic Analysis and Prediction of Tides" by Shureman (1976). Some good years to use are 1964, 1974, 1983, 1992, 2001, 2011, or 2020. The tidal amplitudes for these years are closest to the average amplitudes for an 18.6 year epoch. Other years will have higher or lower tidal amplitudes.

A10. Check if the principal current direction from predicted currents is close to the principal current direction obtained in step A3 from observed data by running premp again. If they are significantly different, strong nontidal currents could have shifted the principal current direction obtained in step A3. It may be desirable to redo steps A6, A7, A8, and A9 along the principal current direction derived from only predicted tidal currents.

A11. Make polar plots of the predicted tidal currents to observe any unusual features such as flood and ebb directions not 180 degrees apart, whether tidal currents have significant energy along a minor axis, rotary versus rectilinear character, etc.

A12. Obtain Greenwich intervals from the predicted tidal currents for a whole year using the program gi. Do not filter the predicted time series since it is already smooth. The Greenwich intervals and mean speeds and directions are at the end of the ${ }^{*} . g i$ output file.

Do not run gi for very weak tidal currents, since the program excludes maximum floods or ebbs with speeds less than 0.25 knots ($12.86 \mathrm{~cm} / \mathrm{s}$). Do not run gi for a rotary tidal current, since the program tries to separate maximum and minimum speeds into floods, ebbs, and slacks.

A13. Run the program convert to convert the cons.out file, which will have tidal constituents in cm / s and modified local epochs (6 '), into three output files with constituents in knots. There will be a file (${ }^{*}$.kap) with constituents in local epochs (6), a file (${ }^{*} . k p r$) with constituents in modified local epochs (6 '), and an ellipse table file (${ }^{*}$.elp) in local epochs (6). These files are in the format requested for the routine prediction of tidal currents for Table 1 of the NOS Tidal Current Tables.

1.6. Tidal Current Analysis Procedure for Subordinate Stations

B1. Calculate the predicted reference station tidal currents along the principal current direction using ncp2. Use the tidal constituents in knots along the major axis. The year should be the year of the subordinate station predicted current from step A9 (or the year of the observed current if there were less that 15 days of data). The reference station should always have a rectilinear current and the current should not be weak since the ncp2 output file gives speeds only to the nearest $0.1 \operatorname{knot}(\sim 5 \mathrm{~cm} / \mathrm{s})$. The reference station floods, ebbs, and slacks are printed in output file 13 in a standard max $/ \mathrm{min} /$ slacks format. These are the times and speeds that would be printed in Table 1 of the NOS Tidal Current Tables. Save file 13 for use with the programs revred or rotary.

B2. Classify the subordinate station current as reversing or rotary by looking at a polar plot of predicted tidal currents for a whole year, previously obtained using the program pred (see step A9). (Use observed data if there were less than 15 days of continuous data and tidal constituents could not be obtained.) Check the results from the program premp in step A10. If the minor axis variance is greater than 20%, the current can be classified as rotary. A reversing subordinate station is listed in Table 2 of the NOS Tidal Current Tables while a rotary subordinate station is listed in Table 5.

B3. For a reversing subordinate station current with more than 15 days of continuous data, analyze the subordinate station current vectorially by running the program revred (set the parameters ITYAN $=1$ and ITIDE $=-1$). Use the max $/ \mathrm{min} /$ slacks file 13 created by ncp2 for the floods, ebbs, and slacks of the reference station. Set the smoothing window length as short as possible (5 data points) since the subordinate station time series is a predicted tidal current.

Since revred can only analyze data from one year, remove any points in the subordinate station file that would be on December 31 of the previous year due to a shift from Greenwich to local time. Do not run revred with very weak subordinate station currents, since the program excludes maximum floods or ebbs with speeds less than 0.25 knots ($12.86 \mathrm{~cm} / \mathrm{s}$).

The parameters needed for Table 2 of the NOS Tidal Current Tables are printed at the end of the *.tbl output file. The printed standard deviations and extrema for these parameters in the *.tbl file and the graphical output in the *.plt file will show how closely the two time series are related. If the scatter is large, a better reference station should be found.

B4. If there are less than 15 days of continuous data at a subordinate station with a reversing current, the tidal constituents cannot be obtained and observed current data must be used in place of the predicted tidal current in step B3. Start with a smoothing window length of 1 hour and increase it if necessary. However, if there are strong nontidal currents during this time period, the results may be inaccurate.

A better method is available if there is observed data at the reference station during the deployment of the subordinate station. First, run revred with the parameters ITYAN $=2$ and ITIDE $=0$ to obtain a $\mathrm{max} / \mathrm{min} / \mathrm{slacks}$ file at the reference station from the observed data. Then, run revred again for the subordinate station (with ITYAN $=1$ and ITIDE $=-$ 1) using the observed $\mathrm{max} / \mathrm{min} /$ slacks file for the reference station.

B5. For a rotary current at a subordinate station with more than 15 days of continuous data, run the program rotary to obtain the mean tidal current cycle. Use the output file 13 created by ncp2 for the reference station floods, ebbs, and slacks. The mean speeds and directions for the subordinate station current at 0 to 12 hours after maximum flood at the reference station are printed in the output file. The rotary program results can be used for Table 5 of the NOS Tidal Current Tables only if the reference station current is semidiurnal or mainly semidiurnal. (Set IEV1 $=-1$ for an hourly rotary analysis or set IEV1 = 0 for a half-hourly rotary analysis.) A rotary analysis using diurnal or mainly diurnal tidal cycles can be carried out by setting IEV1 $=26$ and IEV2 $=0$, but the times will run from 0 to the mean tidal cycle length and not fit the format of Table 5. Set the IEDIT parameter to 1 for weak rotary tidal currents.

Use the times in file 13 to choose an analysis period for the rotary control file consisting of an integral number of complete tidal cycles preferably beginning on reference station flood times. Choose the starting time after the beginning of the subordinate station predicted data and the ending time before the end of the subordinate station predicted data. This will trim off extra data so only complete tidal cycles will be in the analysis. Remember that while file 13 and the starting and ending times should all be local, subordinate station predicted data may be in Greenwich time.

B6. If there are less than 15 days of continuous data at a rotary subordinate station, the tidal constituents cannot be obtained and subordinate station observed data must be used in step B5. If there were large nontidal events during this period, the results may be inaccurate.

2. LSQHA: THE LEAST SQUARES HARMONIC ANALYSIS PROGRAM

2.1. Introduction

The least squares method of harmonic analysis is a method for deriving the tidal constituents from a water level or current time series. This is done by creating a matrix of covariance (or correlation coefficients) between each individual constituent time series and the observed time series (Harris, et al., 1963). The matrix is inverted to solve for the amplitudes and phases of the harmonic constituents. The constituent with the highest correlation is then subtracted from the observed time series and the matrix is recalculated with a residual time series in place of the observed. (An option exists for solving for the constituents in a specified order.) The least squares harmonic analysis program has the capability of solving for the 175 tidal constituents shown in Table B.

The number of constituents that can be determined depends on the amount of data available. In general, the time length of data needed to accurately distinguish the amplitudes and phases of two constituents is the synodic period. The synodic period is the length of time in which the higher frequency constituent completes exactly one more cycle than the lower frequency constituent.

NOS has traditionally analyzed water level data for 37 tidal constituents. For 15 days of data, the following 16 constituents can be resolved:

$$
\begin{aligned}
& 2 \mathrm{Q}(1), \mathrm{O}(1), \mathrm{K}(1), \mathrm{OO}(1), 2 \mathrm{~N}(2), \mathrm{M}(2), \mathrm{S}(2), 2 \mathrm{SM}(2), \\
& 2 \mathrm{MK}(3), \mathrm{MK}(3), \mathrm{M}(4), \mathrm{MS}(4), \mathrm{S}(4), \mathrm{M}(6), \mathrm{S}(6), \mathrm{M}(8)
\end{aligned}
$$

For 30 days of data, the following seven additional constituents can be resolved, for a total of 23:

$$
\mathrm{Q}(1), \mathrm{M}(1), \mathrm{J}(1), \mathrm{N}(2), \mathrm{L}(2), \mathrm{M}(3), \mathrm{MN}(4)
$$

For 180 days of data, the following six additional constituents can be resolved, for a total of 29:

$$
\mathrm{RHO}(1), \mathrm{P}(1), \mathrm{MU}(2), \mathrm{NU}(2), \mathrm{LAMBDA}(2), \mathrm{K}(2)
$$

For 365 days of data, the following three additional constituents can be resolved, for a total of 32:

$$
S(1), T(2), R(2)
$$

Some of these tidal constituents, known as overtides and compound tides, can become increasingly important in shallow waters. The overtides are $M(4), S(4), M(6), S(6)$, and $M(8)$. The compound tides are $2 \mathrm{MS}(2), 2 \mathrm{MK}(3), \mathrm{MK}(3), \mathrm{MS}(4)$, and $\mathrm{MN}(4)$.

The last five constituents MF, MSF, MM, SSA, and SA are the fortnightly, monthly, semiannual, and annual constituents. Although synodic periods are not a problem, several years of data are
usually necessary to determine these constituents with any degree of accuracy. These constituents are often dominated by nontidal meteorological influences which are highly variable from year to year (e.g. the steric effect on sea level or the density-driven flow effect on currents in estuaries). Although SSA and SA are usually important constituents for water level predictions, they are generally insignificant for current predictions.

In practice, constituents can often be accurately determined with less data than the synodic periods would indicate. The best plan is to start with the largest number of constituents and reduce the number if the results are unstable. Unstable results are indicated by unreasonably large constituent amplitudes for closely-spaced constituents. Be sure to check $\mathrm{K}(1), \mathrm{P}(1), \mathrm{S}(1)$, $S(2), K(2), T(2)$, and $R(2) . P(1)$ should be smaller than $K(1)$ and $K(2)$ should be smaller than $\mathrm{S}(2)$. $\mathrm{S}(1), \mathrm{T}(2)$, and $\mathrm{R}(2)$ should be very small.

The least squares program does not require the input data to be a continuous time series. There are three data input options: 1) an equally-spaced, continuous time series, 2) a limited number of blocks (up to 20) of equally-spaced, continuous data, or 3) equally-spaced data with numerous gaps or randomly-spaced data. For the third case, a time in Julian days must be read in for each data point. (If the data are from different years, separate blocks are needed to specify the data in each year.) The third case takes longer to run.

Some of the program parameters have been hard-wired. The program is dimensioned for 120000 records (NRECRD) which is equivalent to 1.37 years of 6 minute data. It is dimensioned to solve up to 175 constituents. Since MINTRM $=0$ and MAXTRM $=0$, no intermediate solutions are printed. The program can read up to 20 blocks of continuous data or it can read in randomlyspaced data with times in Julian days. The program will not analyze less than 29 days of data.

The following program options are available in the code, where 1 is chosen to implement the option and 0 is chosen not to implement the option. They have all been set to zero.

ICNTL=0,0,0,0,0,0,0,0,0,0
ICNTL(1) is not used.
ICNTL(2) is not used.
ICNTL(3) is not used.
ICNTL(4) is to print a table of means and standard deviations from subroutine CSTAT2.
ICNTL(5) is to use the matrix of correlation coefficients instead of covariance to improve stability.
ICNTL(6) is not used.
ICNTL(7) is to display intermediate matrices from subroutines SCREEN and CSTAT2.
ICNTL(8) is not used.
ICNTL(9) is to continue through the list of all predictors requested instead of terminating calculations after finding the first predictor whose variance is below CUTOFF. ICNTL(10) is to calculate predictors in the order given instead of rearranging the matrix to choose predictors based on the largest reduction of variance.

The program is run in a UNIX environment using

$$
\text { 1sqha }<\text { lsq.ctl }>\text { lsqout }
$$

where lsq.ctl is the control file and lsqout is the output file. A file named cons.out is also created with the constituents in standard predictions format.

Number	Name	Speed (degrees/hour)
1	M(2)	28.9841042
2	S(2)	30.0000000
3	N (2)	28.4397295
4	K(1)	15.0410686
5	M(4)	57.9682084
6	$\mathrm{O}(1)$	13.9430356
7	$\mathrm{M}(6)$	86.9523127
8	MK(3)	44.0251729
9	S(4)	60.0000000
10	$\mathrm{MN}(4)$	57.4238337
11	$\mathrm{NU}(2)$	28.5125831
12	S(6)	90.0000000
13	MU(2)	27.9682084
14	2N(2)	27.8953548
15	$\mathrm{OO}(1)$	16.1391017
16	LAMBDA(2)	29.4556253
17	S(1)	15.0000000
18	M(1)	14.4966939
19	J(1)	15.5854433
20	MM	0.5443747
21	SSA	0.0821373
22	SA	0.0410686
23	MSF	1.0158958
24	MF	1.0980331
25	RHO(1)	13.4715145
26	Q(1)	13.3986609
27	T(2)	29.9589333

TABLE B. TIDAL CONSTITUENTS IN STANDARD ORDER		
Number	Name	Speed (degrees/hour)
28	R(2)	30.0410667
29	2Q(1)	12.8542862
30	$\mathrm{P}(1)$	14.9589314
31	2SM(2)	31.0158958
32	M(3)	43.4761563
33	L(2)	29.5284789
34	2MK(3)	42.9271398
35	K(2)	30.0821373
36	M(8)	115.9364169
37	MS(4)	58.9841042
38	SIGMA(1)	12.9271398
39	MP(1)	14.0251729
40	CHI(1)	14.5695476
41	$2 \mathrm{PO}(1)$	15.9748272
42	$\mathrm{SO}(1)$	16.0569644
43	MSN(2)	30.5443747
44	MNS(2)	27.4238337
45	$\mathrm{OP}(2)$	28.9019669
46	MKS(2)	29.0662415
47	2NS(2)	26.8794590
48	MLN2S(2)	26.9523126
49	2ML2S(2)	27.4966873
50	SKM(2)	31.0980331
51	2MS2K(2)	27.8039338
52	MKL2S(2)	28.5947204
53	M2(KS)(2)	29.1483788
54	2SN(MK)(2)	29.3734880
55	$2 \mathrm{KM}(\mathrm{SN})(2)$	30.7086493
56	$\mathrm{SO}(3)$	43.9430356
57	SK(3)	45.0410686
58	$\mathrm{NO}(3)$	42.3827651
59	MK(4)	59.0662415
60	SN(4)	58.4397295

TABLE B. TIDAL CONSTITUENTS IN STANDARD ORDER		
Number	Name	Speed (degrees/hour)
61	$2 \mathrm{MLS}(4)$	57.4966873
62	3MS(4)	56.9523127
63	ML(4)	58.5125831
64	$\mathrm{N}(4)$	56.8794590
65	SL(4)	59.5284789
66	MNO(5)	71.3668693
67	2MO(5)	71.9112440
68	2MK(5)	73.0092770
69	MSK(5)	74.0251728
70	3KM(5)	74.1073100
71	2MP(5)	72.9271398
72	$3 \mathrm{MP}(5)$	71.9933813
73	MNK(5)	72.4649023
74	2SM(6)	88.9841042
75	2MN(6)	86.4079380
76	MSN(6)	87.4238337
77	2MS(6)	87.9682084
78	2NMLS(6)	85.3920421
79	2NM(6)	85.8635632
80	MSL(6)	88.5125831
81	2ML(6)	87.4966873
82	MSK(6)	89.0662415
83	2MLNS(6)	85.9364168
84	3MLS(6)	86.4807916
85	2MK(6)	88.0503457
86	2MNO(7)	100.3509735
87	2NMK(7)	100.9046318
88	2MSO(7)	101.9112440
89	MSKO(7)	103.0092771
90	2MSN(8)	116.4079380
91	3MS(8)	116.9523127
92	2(MS)(8)	117.9682084
93	2(MN)(8)	114.8476674

TABLE B. TIDAL CONSTITUENTS IN STANDARD ORDER		
Number	Name	Speed (degrees/hour)
94	$3 \mathrm{MN}(8)$	115.3920422
95	2MSL(8)	117.4966873
96	4MLS(8)	115.4648958
97	3ML(8)	116.4807916
98	3MK(8)	117.0344500
99	2MSK(8)	118.0503457
100	2M2NK(9)	129.8887360
101	3MNK(9)	130.4331108
102	4MK(9)	130.9774855
103	3MSK(9)	131.9933813
104	4MN(10)	144.3761464
105	$\mathrm{M}(10)$	144.9205211
106	3MNS(10)	145.3920422
107	4MS(10)	145.9364169
108	3MSL(10)	146.4807916
109	3M2S(10)	146.9523127
110	4MSK(11)	160.9774855
111	4MNS(12)	174.3761464
112	5MS(12)	174.9205211
113	4MSL(12)	175.4648958
114	4M2S(12)	175.9364169
115	TK(1)	14.9178647
116	RP(1)	15.0821353
117	KP(1)	15.1232059
118	THETA(1)	15.5125897
119	KJ(2)	30.6265119
120	$\mathrm{OO}(2)$	27.3416965
121	$\mathrm{MO}(3)$	42.9271397
122	SK(4)	60.0821373
123	$2 \mathrm{KO}(1)$	16.1391016
124	2OK(1)	12.8450026
125	2NK2S(2)	26.9615963
126	MNK2S(2)	27.5059710

Number	Name	Speed (degrees/hour)
127	2KN2S(2)	28.6040041
128	MNKS(4)	57.5059710
129	KN(4)	58.5218668
130	3NKS(6)	85.4013258
131	2NMKS(6)	85.9457005
132	2MNKS(6)	86.4900752
133	MKN(6)	87.5059710
134	NSK(6)	88.5218668
135	3MNKS(8)	115.4741794
136	2MNK(8)	116.4900752
137	MSNK(8)	117.5059710
138	2MNSK (10)	146.4900752
139	$3 \mathrm{MNKS}(12)$	175.4741794
140	2NP(3)	41.9205276
141	$2 \mathrm{KP}(1)$	15.1232058
142	2PK(1)	14.8767942
143	KP(2)	30.0000001
144	2SK(2)	29.9178627
145	2KS(2)	30.1642746
146	2TS(2)	29.9178666
147	ST(4)	59.9589333
148	3SK(4)	59.9178627
149	3KS(4)	60.2464119
150	3TS(4)	59.8767999
151	$\mathrm{SO}(2)$	28.9430356
152	$\mathrm{SO}(0)$	1.0569644
153	.5MF	0.5490165
154	.5MSF	0.5079479
155	ST(0)	0.0410667
156	3SA	0.1232059
157	4SA	0.1642746
158	6SA	0.2464118
159	8SA	0.3285841

TABLE B. TIDAL CONSTITUENTS IN STANDARD ORDER		
Number	Name	Speed (degrees/hour)
160	10 SA	0.4106864
161	12 SA	0.4928237
162	24 SA	0.9856473
163	$\mathrm{HS}(3)$	45.0000000
164	$\mathrm{HS}(5)$	75.0000000
165	$\mathrm{O}(2)$	27.8860712
166	$\mathrm{SK}(2)$	30.0410686
167	$\mathrm{NK}(3)$	43.4807981
168	$\mathrm{SP}(3)$	44.9589314
169	$\mathrm{~K}(3)$	45.1232059
170	$\mathrm{NO}(4)$	56.3258007
171	$\mathrm{MO}(4)$	56.8701754
172	$\mathrm{SO}(4)$	57.8860712
173	$\mathrm{~S}(7)$	105.0000000
174	$\mathrm{~S}(8)$	120.0000000
175	$\mathrm{~S}(10)$	150.0000000

2.2. Explanation of the Control File

The following is a sample of the Isqha control file which will be explained in detail in this section. The program uses free-format to read in the numbers.

```
tser1 ! Input data filename
    0.000001 1 66 ! cutoff, nblk, njobx
    121. 9504 6 0.0 0.0 0.0 ! azi, n, nsph, cvar, umean, vmean
    1990. 8 19. 19. 0. 75. 82.76 ! xyer, month, day, stt, sttm, tm, gonl
    1 1.0 23 2 ! indata, kindat, vfac, ncon, itype
(9x,2f8.3) ! Format for input data
'2Q(1)','O(1)','K(1)','OO(1)','2N(2)','M(2)','S(2)','2SM(2)',
'2MK(3)','MK(3)','M(4)','MS (4)','S(4)','M(6)','S(6)','M(8)',
'Q(1)','M(1)','J(1)','N(2)','L(2)','M(3)','MN(4)',
'RHO(1)','P(1)','MU(2)','NU(2)','LAMBDA (2)','K(2)',
'S(1)','T(2)','R(2)','MF','MSF','MM','SSA','SA'
Line #1
```

The first line in the control file is the name of the input data file.

Line \#2
CUTOFF is the variance cutoff for predictors. Calculations are terminated when the next constituent accounts for a fraction of the total variance less than CUTOFF.

NBLK is the number of blocks of data to be analyzed.
NJOBX is the total number of days (to the nearest integer) between the beginning and the end of the time series to be analyzed.

Line \#3
AZI is the principal current direction for vector data. Pick the flood direction. (Not relevant for scalar input data, but must be given.)

N is the number of data points to analyze in a block.
NSPH is the number of samples per hour (e.g. 10 for 6 minute data, 1 for hourly data).

CVAR is the direction of magnetic north if it hasn't been corrected for in the data. Otherwise, is should be set to zero.

UMEAN is a mean current to the east or a mean water level.

VMEAN is a mean current to the north.
Usually set UMEAN and VMEAN to 0 unless the means are much larger than the data variance. UMEAN and VMEAN are subtracted from the time series before the analysis and added back to the results. This can make the variance matrix more stable and result in a more accurate solution.

Line \#4
XYER is the starting year.
MONTH is the starting month.
DAY is the starting day.
STT is the starting hour which should be in LOCAL time to obtain modified local epochs (6') for the constituent phases. If STT is in Greenwich time, the Greenwich epochs (G) will be obtained.

STTM is the starting minute.
TM is the time meridian of the starting time STT (75 for Eastern Standard Time, 90 for Central Standard Time, 120 for Pacific Standard Time, or 0 for Greenwich Mean Time).

GONL is the longitude of the station in decimal degrees (positive for west longitude).

Line \#5

INDATA is 1 for equally-spaced, continuous data or 2 for randomly-spaced data. (For INDATA=2, the first column of the input data file must contain time in decimal Julian days).

KINDAT is 1 for vector data (current speed and direction) or 2 for scalar data (water level).

VFAC is a scaling parameter in the denominator to give the user the option to change the units of the input time series (e.g., 51.444 to change cm / s to knots, 30.48 to change cm to feet).

NCON is the number of constituents to solve for.
ITYPE specifies how to read in the constituents to be solved for.

If ITYPE is 1 , a list of $N C O N$ constituent speeds (in any order) are read in as
$28.9841042,28.4397295,30.0000000$, . .
where up to 175 constituent speeds in degrees per hour can be given. (They must be given exactly as in Table B with 7 digits after the decimal point.)

If ITYPE is 2, a list of NCON constituent names (in any order) are read in as

The constituents must be specified as shown in Table B within single quote marks.

If ITYPE is 3, the NCON constituents solved for are in the standard order shown in Table B (e.g., if NCON = 37, the first 37 constituents in Table B are solved for).

Line \#6

The sixth line of the control file is the FORTRAN format of the data in the input file. If INDATA=1 and KINDAT=1, a speed and a direction must be read in. If INDATA=1 and KINDAT=2, a scalar value must be read in. If INDATA=2 and KINDAT=1, a time in Julian days and a speed and direction must be read in. If INDATA=2 and KINDAT=2, a time in Julian days and a scalar value must be read in.

The last lines of the control file contain the list of constituents to be solved for if ITYPE $=1$ or ITYPE $=2$. That completes this control file.

2.3. Sample Control File for Multiple Deployments

The least squares program can be used for data collected over multiple deployments (up to 20) at a single station. The following is a sample control file for reading in a time series composed of four blocks of continuous data separated by three data gaps. The third, fourth, fifth, and sixth lines of the control file must be repeated for each block. The time used for STTM should be the middle of the first sampling period. Note that AZI, N, XYER, MONTH, DAY, STT, and STTM are different for each block. The number of samples per hour NSPH must be the same for all the blocks. If they are different, the random data option (INDATA $=2$) must be used. The four input data block files were concatenated into the file tserl. Check the FORTRAN format for the input data to make sure it is correct.

2.4. Output Files

Two output files are produced by lsqha. An output file named cons.out is produced with the constituents in standard predictions format, which consists of a two line header, a line containing a mean value, and six lines containing the amplitudes and phases of 37 tidal constituents. This output file is the same as the file produced by the Fourier harmonic analysis
programs harm29 and harm15 with modified local epochs (6'). The program convert can then be used to convert it into other forms (a standard predictions format file and an ellipse table file with amplitudes in knots and the local epochs 6).

Sample cons.out output file in standard predictions format:

```
Harmonic Analysis of Data in tser1
Least Squares H.A. Beginning 8-19-1990 at Hour 19.00 along 120 degrees
    2 1 8 1
            1539083380208773399 95113358307852470 2741 154271822477 0 0
            2 22412573 11522836 617 267 0 0 3052285 0 0 0 9442604
            3 13942823 
            4
            6 2433056 10503509
Harmonic Analysis of Data in tser1
Least Squares H.A. Beginning 8-19-1990 at Hour 19.00 along 210 degrees
    -95
\begin{tabular}{rrrrrrrrr}
1 & 25622664 & 11672623 & 2722415 & 16151249 & 1263415 & 12251255 & 5663342 \\
2 & 526 & 767 & 912794 & 2862993 & 0 & 0 & 1901480 & 0 \\
0 & 116 & 432 \\
3 & 116 & 933 & 0 & 0 & 0 & 0 & 3662205 & 3181901 \\
4 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
2411531 & 0 & 0 & 0 & 0 \\
5 & 2563269 & 0 & 0 & 791311 & 388 & 873 & 1842366 & 5541270 \\
6 & 1481916 & 2282407 & & & & & 0 & 0 \\
0
\end{tabular}
If KINDAT = 1, the program first prints a solution for the major axis component and then for the minor axis component. Otherwise, if KINDAT = 2 (a scalar harmonic analysis) only one set of constitutents is printed.
The output file lsqout contains information about all the input parameters and the intermediate steps along with the solution. This output file has lines up to 132 characters long. The Unix command lp -oc can be used to print text in small letters.
```


Sample lsqout output file:

```
azi = 121.0 n = 9504 nsph = 6 
xyer = 1990.0 month = 8 day = 19.0 stt = 19.0sttm = .0
tm = 75.0 gonl = 82.76
indata = 1 kindat = 1 vfac = 1.0 ncon = 23 itype = 2
Harmonic Analysis of Data in tser1
Least Squares H.A. Beginning 8-19-1990 at Hour 19.00
```



```
NCONST= 23 NYYYY= 1990 NDELTT= 6 CUTOFF= .10E-05 TZERO= .10E-05 MINTRM= 0 MAXTRM= 0 NCOL= 175 NROW= 175
Harmonic Analysis considering 23 constituents.
The time interval between observations is . 17 hours. Predictors which account for less than . 0000010 of the variance
of the input data series are dropped. Harmonic constants are adjusted for the year 1990
Binary control fields: 0 0 0 0 0 0 0 0 0 0
```

```
azi = 122.0 n = 8784 nsph = 6
```

azi = 122.0 n = 8784 nsph = 6
cvar = .0 umean = .0 vmean = .0
cvar = .0 umean = .0 vmean = .0
xyer = 1990.0 month = 10 day = 27.0 stt = 19.0sttm = .0
xyer = 1990.0 month = 10 day = 27.0 stt = 19.0sttm = .0
tm = 75.0 gonl = 82.76
tm = 75.0 gonl = 82.76
indata = 1 kindat = 1 vfac = 1.0 ncon = 23 itype = 2
indata = 1 kindat = 1 vfac = 1.0 ncon = 23 itype = 2
First data point of data set 2 is 70.60 125
First data point of data set 2 is 70.60 125
Azimuth used = 122.00 degrees
Azimuth used = 122.00 degrees
8 7 8 4 data values to be analyzed
8 7 8 4 data values to be analyzed
Equally spaced data beginning Month 10 Day 27 Year 1990 Julian Day 300
Number of Julian Days to beginning of series 299
Number of Julian Days from beginning of series 69
Start time of data set 2 from beginning of series is 1656.00 hours
Average of data set 3.2056 -.4167 Data values }878

```

```

xyer = 1991.0 month = 1 day = 2.0 stt = 19.0sttm = .0
xyer = 1991.0 month =
indata = 1 kindat = 1 vfac = 1.0 ncon = 23 itype = 2
First data point of data set 3 is 12.16 279
Azimuth used = 114.00 degrees
8496 data values to be analyzed
Equally spaced data beginning Month 1 Day 2 Year 1991 Julian Day 2
Number of Julian Days to beginning of series 366
Start time of data set 3 from beginning of series is 3264.00 hours
Start time of data set 3 from beginning of series is
azi = 123.0 n = 10944 nsph = 6
cvar = .0 umean = .0 vmean = . N
cvar = .0 umean = .0 vmean = .0
xyer = 1991.0 month =
indata = 1 kindat = 1 vfac = 1.0 ncon = 23 itype = 2
First data point of data set 4 is 10.41 135
Azimuth used = 123.00 degrees
1 0 9 4 4 data values to be analyzed

```

```

Greenwich (V(0)+U) for the beginning of the series }199
Node factors are for the middle of the series

	$2 Q(1)$	$O(1)$	$\mathrm{K}(1)$	$\mathrm{OO}(1)$	$2 \mathrm{~N}(2)$	$\mathrm{M}(2)$	$\mathrm{S}(2)$	$2 \mathrm{SM}(2)$	$2 \mathrm{MK}(3)$	$\mathrm{MK}(3)$
$(\mathrm{V}(0)+\mathrm{U})$	289.84	70.60	169.12	92.83	101.55	242.31	210.00	177.69	315.51	51.44
Node	1.1056	1.1056	1.0656	1.4007	.9823	.9823	1.0000	.9823	1.0282	1.0467
		$\mathrm{M}(4)$	$\mathrm{MS}(4)$	$\mathrm{S}(4)$	$\mathrm{M}(6)$	$\mathrm{S}(6)$	$\mathrm{M}(8)$	$\mathrm{Q}(1)$	$\mathrm{M}(1)$	$\mathrm{J}(1)$
$\mathrm{V}(0)+\mathrm{U})$	124.63	92.31	60.01	6.94	270.00	249.26	.22	102.63	242.09	171.94
Node	.9648	.9823	1.0000	.9477	1.0000	.9309	1.1056	1.0384	1.1012	.9823

```
```

Equally spaced data beginning Month 3 Day 12 Year 1991 Julian Day }7
Number of Julian Days to beginning of series 435
Number of Julian Days from beginning of series 205
Start time of data set 4 from beginning of series is 4920.00 hours
Average of data set 1.1023 -. 5977 Data values 10944

```

Data Block No.
From TRGSA: Gap in data between

Data Block No.
From TRGSA: Gap in data between Data Block No.
From TRGSA: Gap in data between Data Block No.
Data Block No.
From TRGSA: Gap in data between Data Block No.
From TRGSA: Gap in data between Data Block No. 3
From TRGSA: Gap in data between From TRGsA: Gap 1

HE 23TH CONSTITUENT ACCOUNTS FOR ONLY . 0000008 OF THE VARIANCE. CALCULATIONS FOR 22 CONSTITUENTS ARE GIVEN BELOW. RESULTS OBTAINED LATER IN THE PROGRAM ARE OF DOUBTFUL VALUE.

\section*{(Major Axis)}

Analysis based on 37728 observation points as indicated below
9504 observations at intervals of . 17 hours Year= 1990 Month= 8 Day= 19 Hour=19 Min= 0
8784 observations at intervals of . 17 hours Year \(=1990\) Month= 10 Day \(=27\) Hour=19 Min= 0
8496 observations at intervals of . 17 hours Year= 1991 Month= 1 Day= 2 Hour=19 Min= 0
10944 observations at intervals of . 17 hours Year= 1991 Month= 3 Day= 12 Hour=19 Min= 0
(Major Axis)
Harmonic Analysis of Data in tser1
Least Squares H.A. Beginning 8-19-1990 at Hour 19.00 along 120 degrees
Observed Mean \(=2.181\) units Observed Variance \(=2923.919\) sq units Observed Standard Deviation \(=54.073\) units Constant in regression \(=2.181\) units Residual Variance \(=258.624\) sq units Residual Standard Deviation \(=16.082\) units
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Cons Num. & \begin{tabular}{l}
tituent \\
Label
\end{tabular} & \begin{tabular}{l}
--- Adj \\
(H) \\
(units)
\end{tabular} & \begin{tabular}{l}
sted for \\
(K) \\
(degrees)
\end{tabular} & \[
\begin{aligned}
& \text { standard } \\
& \left(K^{\prime}-K\right)
\end{aligned}
\]
(degrees) & \[
\begin{gathered}
\text { year ---- } \\
\text { (K') } \\
\text { (degrees) }
\end{gathered}
\] & * & Constituent Speed (deg./hr.) & R**2 this constituent only (1) & R**2 thru this level screening (2) & \[
\begin{aligned}
& \text { Selec- } \\
& \text { tion } \\
& \text { Number }
\end{aligned}
\] &  & \begin{tabular}{l}
Unadjuste \\
(R) \\
(units)
\end{tabular} & \begin{tabular}{l}
d values \\
(Z) \\
(degrees)
\end{tabular} \\
\hline 6 & M (2) & 53.9078 & 317.40 & 20.60 & 338.00 & * & 28.9841042 & . 484898 & . 484898 & 1 & * & 52.9518 & 95.69 \\
\hline 3 & K (1) & 30.7849 & 239.46 & 7.55 & 247.02 & * & 15.0410686 & . 169686 & . 654584 & 2 & * & 32.8053 & 77.90 \\
\hline 2 & O(1) & 27.1819 & 234.68 & 13.04 & 247.73 & & 13.9430356 & . 153572 & . 808481 & 3 & * & 30.0523 & 177.12 \\
\hline 7 & S (2) & 20.8767 & 324.34 & 15.52 & 339.86 & * & 30.0000000 & . 074957 & . 883449 & 4 & * & 20.8767 & 129.86 \\
\hline 20 & N(2) & 9.5106 & 312.50 & 23.32 & 335.82 & * & 28.4397295 & . 015330 & . 898788 & 5 & * & 9.3419 & 163.88 \\
\hline 17 & Q (1) & 5.1000 & 231.17 & 15.77 & 246.93 & * & 13.3986609 & . 005522 & . 904313 & 6 & * & 5.6385 & 246.71 \\
\hline 21 & L (2) & 2.5924 & 325.66 & 17.88 & 343.53 & * & 29.5284789 & . 001928 & . 906251 & 7 & * & 3.3772 & 223.12 \\
\hline 11 & M (4) & 2.7413 & 334.15 & 41.20 & 15.35 & * & 57.9682084 & . 001211 & . 907462 & 8 & * & 2.6450 & 250.72 \\
\hline 10 & MK (3) & 2.2409 & 229.16 & 28.15 & 257.32 & * & 44.0251729 & . 000870 & . 908332 & 9 & * & 2.3456 & 205.88 \\
\hline 9 & 2MK (3) & 2.2464 & 238.18 & 33.64 & 271.82 & & 42.9271398 & . 000896 & . 909229 & 10 & * & 2.3097 & 316.31 \\
\hline 4 & OO(1) & 1.3936 & 280.20 & 2.06 & 282.26 & * & 16.1391017 & . 000612 & . 909843 & 11 & * & 1.9520 & 189.44 \\
\hline 8 & 2SM (2) & 1.8259 & 244.67 & 10.44 & 255.11 & * & 31.0158958 & . 000550 & . 910393 & 12 & * & 1.7935 & 77.42 \\
\hline 19 & J (1) & 1.1079 & 251.77 & 4.83 & 256.60 & & 15.5854433 & . 000262 & . 910655 & 13 & * & 1.2201 & 14.51 \\
\hline 13 & S (4) & 1.1523 & 252.58 & 31.04 & 283.62 & * & 60.0000000 & . 000226 & . 910881 & 14 & * & 1.1523 & 223.61 \\
\hline 12 & MS (4) & 1.0500 & 314.76 & 36.12 & 350.88 & * & 58.9841042 & . 000179 & . 911060 & 15 & * & 1.0313 & 258.57 \\
\hline 5 & 2N(2) & . 9435 & 234.34 & 26.04 & 260.39 & & 27.8953548 & . 000145 & . 911206 & 16 & * & . 9268 & 158.84 \\
\hline 18 & M (1) & . 7950 & 94.82 & 10.28 & 105.09 & * & 14.4966939 & . 000116 & . 911323 & 17 & * & . 8256 & 2.46 \\
\hline 22 & M (3) & . 7122 & 89.50 & 30.90 & 120.40 & * & 43.4761563 & . 000082 & . 911404 & 18 & * & . 6933 & 116.92 \\
\hline 23 & MN (4) & . 6169 & 342.75 & 43.92 & 26.67 & * & 57.4238337 & . 000061 & . 911465 & 19 & * & . 5952 & 332.42 \\
\hline 1 & 2Q(1) & . 5328 & 202.90 & 18.49 & 221.39 & * & 12.8542862 & . 000059 & . 911524 & 20 & * & . 5890 & 291.56 \\
\hline 15 & S (6) & . 3049 & 181.90 & 46.56 & 228.46 & * & 90.0000000 & . 000016 & . 911540 & 21 & * & . 3049 & 318.46 \\
\hline 16 & M (8) & . 2432 & 223.17 & 82.40 & 305.57 & * & 115.9364169 & . 000009 & . 911549 & 22 & * & . 2264 & 56.31 \\
\hline
\end{tabular}
(1) R1 is the square of the multiple correlation coefficient between the tide and this constituent
(2) RT is the square of the multiple correlation coefficient between the tide and all constituents thus far selected. Each number is printed with at least one digit which is believed to be insignificant.


THE FOLLOWING VARIABLES WERE REJECTED TO AVOID INSTABILITY
(Minor Axis)
Analysis based on 37728 observation points as indicated below

(Minor Axis)
Harmonic Analysis of Data in tser
Least Squares H.A. Beginning 8-19-1990 at Hour 19.00 along 210 degrees
Observed Mean \(=\quad-.095\) units Observed Variance \(=39.824\) sq units Observed Standard Deviation \(=\quad 6.311\) units Constant in regression \(=-.095\) units Residual Variance \(=32.701\) sq units Residual Standard Deviation \(=5.718\) units


THE FOLLOWING VARIABLES WERE REJECTED TO AVOID INSTABILITY

\section*{3. HARM29 AND HARM15: THE FOURIER HARMONIC ANALYSIS PROGRAMS}

\subsection*{3.1. Introduction}

The Fourier harmonic analysis method, described in Dennis and Long (1971), uses Fourier series summations to obtain the tidal constituents of water level or current data. This method has been programmed for data periods of either 15 or 29 days of continuous, evenly-spaced data. None of the long-term constituents (Mf, MSf, \(\mathrm{Mm}, \mathrm{Sa}\), and Ssa ) are solved for. Also none of the compound tidal constituents \(\left(\mathrm{MK}_{3}, 2 \mathrm{MK}_{3}\right.\), etc.), which can be important in shallow water areas, are solved for.

The program for 29 days of data (harm29) will solve for ten tidal constituents: \(\mathrm{M}_{2}, \mathrm{~S}_{2}, \mathrm{~N}_{2}, \mathrm{O}_{1}\), \(\mathrm{K}_{1}\), and the overtides \(\mathrm{M}_{4}, \mathrm{M}_{6}, \mathrm{M}_{8}, \mathrm{~S}_{4}\), and \(\mathrm{S}_{6}\). Once preliminary values for the amplitude and phase of these ten constituents are obtained, fourteen other constituents are inferred using astronomically-determined amplitude ratios and phase shifts. (An option exists for using the constituents of a chosen reference station to derive the amplitude ratios and phase shifts.) The inferred constituents are: \(2 \mathrm{Q}_{1}, \mathrm{Q}_{1}, \mathrm{k}_{1}, \mathrm{M}_{1}, \mathrm{P}_{1}, \mathrm{~J}_{1}, \mathrm{OO}_{1}, 2 \mathrm{~N}_{2}, \varsigma_{2}, 8_{2}, \mathrm{~L}_{2}, \mathrm{~T}_{2}, \mathrm{R}_{2}\), and \(\mathrm{K}_{2}\). Then, the elimination of perturbations between closely-spaced constituents is carried out. The program for 15 days of data (harm15) is similar to harm29 except that the constituent \(\mathrm{N}_{2}\) cannot be resolved from \(\mathrm{M}_{2}\) without 29 days of data. Therefore, only nine constituents are determined directly and \(\mathrm{N}_{2}\) is inferred from \(\mathrm{M}_{2}\).

The program expects continuous, equally-spaced data in the input file with at least 29 days for harm29 and at least 15 days for harm15. Multiple solutions can be obtained for different segments of a longer data set. The starting times for the segments and the number of points to skip to get to the start of the segments are read in from the control file not from the data input file. The program can read in 60000 data points which is equivalent to 208.3 days of 5 -minute data. The harmonic analysis can be performed on either vector or scalar data and can be read in from a CDF format file or an ASCII file.

Harm29 is run in a Unix environment using
\[
\text { harm29 < harm.ctl }>\text { harmout }
\]
where harm.ctl is the control file and harmout is the output file. A file named cons.out is also created with the constituents in standard predictions format. Harm15 is run the same way. The output file has lines up to 132 characters long. The Unix command \(\mathbf{l p}\)-oc can be used to print text in small letters.

\subsection*{3.2. Explanation of the Control File}

The following control file is used with either harm29 or harm15. The program uses free format to read in the numbers.
\begin{tabular}{llllll} 
FILEIN & & & & & \\
NJ & IAND & NSPH & IREF & IIT & \\
AZI & TM & GONL & CVAR & IEL & \\
AQ & & & & & \\
XYER & MONTH & DAY & STT & STTM & ISKIP9 \\
XYER & MONTH & DAY & STT & STTM & ISKIP9 \\
XYER & MONTH & DAY & STT & STTM & ISKIP9 \\
XYER & MONTH & DAY & STT & STTM & ISKIP9 \\
XYER & MONTH & DAY & STT & STTM & ISKIP9 \\
& & etc. & & &
\end{tabular}

Line \#1
FILEIN is the name of the input data file which can be up to 40 characters long.
Line \#2
NJ is the number of harmonic analyses to perform on the data in FILEIN.
IAND indicates whether FILEIN is an ASCII file (IAND=0) or a CDF format file (IAND=1).

NSPH is the number of samples per hour.
IREF indicates whether to use the astronomically-determined amplitude ratios and phase shifts to infer the minor constituents (IREF \(=0\) ) or to read in the constituents of a reference station to use in calculating the amplitude ratios and phase shifts (IREF=1). This option is not available for harm15.

IIT is the number of iterations to carry out to eliminate the perturbations between nearby constituents. In general, multiple iterations do not significantly change the results so one iteration should be enough. This option is not available for harm15.

Line \#3
AZI is the azimuth of the major axis (in the flood direction) for vector data. The major axis will be analyzed first followed by the minor axis. This parameter is irrelevant for scalar data, but must be given.

TM is the time meridian (i.e. the time zone for the STT values to follow). Enter 0. for Greenwich time, 75. for Eastern Standard Time, 90. for Central Standard Time, or 120. for Pacific Standard Time. If TM is the local time zone, the constituent epochs will be
the modified local epochs (6'). If TM is Greenwich time, the constituent epochs will be Greenwich epochs (G).

GONL is the longitude of the station in decimal degrees (positive for west longitude).
CVAR is the direction of magnetic north if it hasn't been corrected for in the data.
Otherwise, it should be set to zero.

IEL indicates the type of data to be read in from FILEIN.
If FILEIN is an ASCII file (IAND=0),
\(\mathrm{IEL}=-1\) is for vector data in \(24 \mathrm{f} 3.2 / 24 \mathrm{f} 3.0\) format (hourly speeds followed by hourly directions), or
IEL=0 is for vector data in FORTRAN format AQ, or
IEL=1 is for scalar data in FORTRAN format AQ.
If FILEIN is a CDF format file (IAND=1), IEL \(=0\) is for vector data (speed and direction in fields 9 and 8 ), or IEL is the field for scalar data (e.g. 3 for temperature, 4 for conductivity, 6 for pressure).

Line \#4

AQ is the FORTRAN format for reading in an ASCII data input file. Not used for CDF format data input files, but a blank line must be entered anyway.

Line \#5

XYER is the year for the first data point of the analysis period.
MONTH is the month for the first data point of the analysis period.
DAY is the day for the first data point of the analysis period.
STT is the hour for the first data point of the analysis period. (The time zone is indicated by TM.)

STTM is the minute for the first data point of the analysis period. The time used should be for the middle of the first sampling interval.

ISKIP9 is the number of points to skip from the beginning of FILEIN to reach the first data point of the analysis period.

The line beginning with XYER must be repeated NJ times (once for each 15 or 29 day analysis period requested).

\subsection*{3.3. Sample Control Files and Output Files}

This sample control file is for vector data in an ASCII file.


To use the option (IREF=1) of deriving the amplitude ratios and phase shifts for inferring minor constituents from a reference station instead of astronomically, reference station constituents in standard predictions format must be inserted after the second line of the control file. This option is only available for harm29. A sample control file for multiple harmonic analyses of ASCII scalar data is shown here. The third through eighth lines are the tidal constituents of the reference station in standard predictions format. Twelve harmonical analyses of hourly data in sp92.wat will be carried out, one for the first 29 days of each month in 1992.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \[
\begin{gathered}
\text { sp92. wat } \\
12
\end{gathered}
\] & 0 & 01 & 1 & 1 & & \[
\begin{aligned}
& \text { Inp } \\
& \text { ! nj }
\end{aligned}
\] & \begin{tabular}{l}
data \\
and nsph
\end{tabular} & \begin{tabular}{l}
lename \\
iref iit
\end{tabular} & \\
\hline 1 & 1 & 533537 & 170 & 663 & 98523 & 5313351 & 113200 & 4813291 & 61438 \\
\hline 2 & 2 & 132858 & 3 & 394 & 32829 & 27426 & 1243 & 302452 & 143584 \\
\hline 3 & 3 & 143464 & 10 & 891 & 52677 & 91998 & 219 & 00 & 79638 \\
\hline 4 & & 2741479 & 0 & 0 & 00 & 263123 & 893222 & 5627 & 9236 \\
\hline 5 & 5 & 173052 & 1513 & 373 & 103266 & 61942 & 22842 & 112682 & 74610 \\
\hline 6 & 6 & 31004 & & 278 & & & & & \\
\hline 121. 7 & 75. & 82.62 & 0 . & 1 & & ! azi & m gonl & var iel & \\
\hline (10x,f10 & . 5 & & & & & ! FOR & RAN form & t for re & ding in data \\
\hline 1992. & 1 & 11. & 0 & 0 & 0 & ! xye & month & \(y\) stt st & iskip9 \\
\hline 1992. & 2 & 21. & 0 & 0 & 744 & & & & \\
\hline 1992. & 3 & 31. & 0 & 0 & 1440 & & & & \\
\hline 1992. & 4 & 41. & 0 & 0 & 2184 & & & & \\
\hline 1992. & 5 & 51. & 0 & 0 & 2904 & & & & \\
\hline 1992. & 6 & 61. & 0 & 0 & 3648 & & & & \\
\hline 1992. & 7 & 71. & 0 & 0 & 4368 & & & & \\
\hline 1992. & 8 & 81. & 0 & 0 & 5112 & & & & \\
\hline 1992. & 9 & 91. & 0 & 0 & 5856 & & & & \\
\hline 1992. & 10 & 1. & 0 & 0 & 6576 & & & & \\
\hline 1992. & 11 & 1. & 0 & 0 & 7320 & & & & \\
\hline 1992. & 12 & 21. & 0 & 0 & 8040 & & & & \\
\hline
\end{tabular}

The output file cons.out contains the tidal constituents in standard predictions format, which consists of a two line header, a line containing a mean value, and six lines containing the amplitudes and phases of 37 tidal constituents. For the analysis of vector data, constituents are given first along the major axis (AZI) followed by the minor axis (AZI \(+90 \Varangle\). For the analysis of scalar data, only one set of constituents would be given. For multiple analyses, NJ or 2*NJ sets of constituents are printed depending on whether the data are scalar or vector. The program avcons can be used to average the multiple solutions for vector or scalar data. The program convert can then put the result into a useful form (a standard predictions formatted file and an ellipse table file with amplitudes in knots and local epochs 6).
```

Harmonic Analysis of Data in O2dspl
29-Day H.A. Beginning 8-19-1990 at Hour 19.08 along 121 degrees
3513
1587243356221153431122533249298322574 2293356327793245311461920
2 0 0 15243055 0 0 23773263 8812613 0 0 16303142
3 11952695 4113391 0
4 0
5 7232334 98752565 0
6 602 15 0 0
Harmonic Analysis of Data in 02dspl
29-Day H.A. Beginning 8-19-1990 at Hour 19.08 along 211 degrees
1 9 2 1

1	46312432	12802625	25572370	17721011	8993346	1813	836	9263248		
2	0	0	5323599	0	0	4962378	587	439	0	0
3	781186	322521	0	0	129	923	1431098	0	0	0
4	0	0	0	0	0	0	69	760	352	749
462617	102633									
5	47	662	586	998	0	0	0	0	3662315	0
6	5851381	0	0						3482641	

```

\section*{Sample Output File}

\footnotetext{
********** 29 DAY HARMONIC ANALYSIS**********
NJ IAND NSPH IREF IIT
\(\begin{array}{rrrr}\text { NU } & & & \\ 1 & 0 & 6 & 0\end{array}\)
AZI TM GONL CVAR IEL
\(121.00 \quad 75.0082 .75 \quad .00 \quad .00\)
GONL \(=82.75139\) degrees west
Harmonic Analysis of Data in 02dspl
29-Day H.A. Beginning \(8-19-1990\) at Hour 19.08


First data point read in 208.96243.
Last data point read in 17.04113 .
Data point No. 150 is 63.73287
Data point No. 4325 is 45.93279 .
Azimuth used \(=121.0\)
\begin{tabular}{lr} 
Sum of series & 14670.575 \\
Divisor & 4176 \\
Mean of series & 3.51307
\end{tabular}

Data demeaned before performing H. A.
*** Astronomical Data ***
\(277.0256 \quad 334.3837 \quad 280.1895 \quad 281.2209 \quad 259.1560 \quad 1900\). 0 . 5 DAYB \(=232 . \quad\) DAYM \(=246\).
\begin{tabular}{rrrrrrrrrr}
135.334 & 62.192 & 148.077 & 282.779 & 63.807 & 305.454 & .000 & .000 & 26.749 & -9.341 \\
-8.465 & -6.598 & -13.783 & 72.273 & 172.988 & 147.095 & .000 & .000 & .000 & .000 \\
.000 & .000 & .000 & .000 & .000 & .000 & .000 & .000 & .000 & .000
\end{tabular}

SMAC PROD ACCP RESAM
\(\begin{array}{llcccc} & \text { SMAC } & \text { A. } & & & \\ -4.3628 & 1.25938 & -10.30771 & .76107 & & \\ -4.3630 & 2.9589 & .2449 & .9753 & -11.0819 & -.2569\end{array}\)

Harmonic Analysis of Data in 02dspl
29-Day H.A. Beginning \(8-19-1990\) at Hour 19.08 along 121 degrees

\begin{tabular}{lccccc} 
& \(\mathrm{K}(2)\) & \(\mathrm{L}(2)\) & \((2 \mathrm{~N})\) & \(\mathrm{R}(2)\) & \(\mathrm{T}(2)\) \\
Kappa & 330.892 & 338.188 & 271.602 & 330.327 & 329.225 \\
Zeta & 184.0 & 229.6 & 193.7 & 88.0 & 357.5 \\
R(A) & 6.9790 & 2.1753 & 1.5667 & .1726 & 1.2728 \\
& & & & & \\
KAMBDA & MU (2) & \(\mathrm{NU}(2)\) & \(\mathrm{J}(1)\) & \(\mathrm{M}(1)\) \\
Kappa & 322.388 & 302.209 & 296.771 & 265.692 & 241.577 \\
Zeta & 16.8 & 52.5 & 333.9 & 26.6 & 163.2 \\
R(A) & .4033 & 1.3826 & 2.2852 & 2.4222 & 2.3402 \\
& & & \(\mathrm{P}(1)\) & \(\mathrm{Q}(1)\) & \\
Kappa & 277.894 & 251.867 & 217.462 & 205.453 & 219.084 \\
Zeta & 184.4 & 211.4 & 232.3 & 293.4 & 62.1 \\
R(A) & 1.7418 & 9.6232 & 5.9860 & .8022 & 1.1725
\end{tabular}

Elimination of Component Effects
\begin{tabular}{lrrrc} 
& R(A) & Zeta & Kappa & H(A) \\
M(2) & 57.46759 & 90.74 & 314.97 & 58.72424 \\
\(\mathrm{~N}(2)\) & 11.99106 & 150.46 & 301.55 & 12.25327 \\
\(\mathrm{~S}(2)\) & 22.11546 & 130.60 & 327.60 & 22.11546 \\
\(\mathrm{O}(1)\) & 31.16687 & 173.99 & 232.31 & 27.79270 \\
\(\mathrm{~K}(1)\) & 32.07312 & 86.69 & 249.86 & 29.83246
\end{tabular}

Harmonic Constants (H) and Kappa
\begin{tabular}{crrrrr} 
& \(\mathrm{J}(1)\) & \(\mathrm{K}(1)\) & \(\mathrm{K}(2)\) & \(\mathrm{L}(2)\) & \(\mathrm{M}(1)\) \\
Kappa & 258.56 & 249.86 & 328.62 & 301.55 & 241.08 \\
H (A) & 2.1956 & 29.8325 & 6.0154 & 1.7522 & 1.9733 \\
& \(\mathrm{M}(2)\) & \(\mathrm{M}(4)\) & \(\mathrm{M}(6)\) & \(\mathrm{M}(8)\) & \(\mathrm{N}(2)\) \\
Kappa & 314.97 & 315.10 & 130.26 & 279.13 & 301.55 \\
H (A) & 58.7242 & 2.2927 & 1.1462 & .6019 & 12.2533 \\
& (2N) & \(0(1)\) & \((00)\) & \(\mathrm{P}(1)\) & \(\mathrm{Q}(1)\) \\
Kappa & 288.13 & 232.31 & 267.41 & 248.54 & 223.60 \\
H(A) & 1.6297 & 27.7927 & 1.1951 & 9.8745 & 5.3918 \\
& & \((2 Q)\) & \(\mathrm{R}(2)\) & \(\mathrm{S}(2)\) & \(\mathrm{S}(4)\) \\
Kappa & 214.90 & 328.10 & 327.60 & 274.51 & 214.74 \\
H (A) & .7226 & .1769 & 22.1155 & 1.5244 & .8814 \\
& \(\mathrm{~T}(2)\) & LAMBDA & \(\mathrm{NU}(2)\) & RHO(1) & \\
Kappa & 327.09 & 320.83 & 303.35 & 224.78 & \\
H (A) & 1.3048 & .4111 & 2.3771 & 1.0561 &
\end{tabular}

Major Axis (121.)
Kappa Primes are for Time Meridian 75.
Harmonic Constants (H) and Kappa Prime


Data demeaned before performing H. A.
Harmonic Analysis of Data in 02dspl
29-Day H.A. Beginning \(8-19-1990\) at Hour 19.08 along 211 degrees
\begin{tabular}{cccccc} 
& M (2) & \(\mathrm{N}(2)\) & \(\mathrm{S}(2)\) & \(\mathrm{O}(1)\) & \(\mathrm{K}(1)\) \\
Zeta(Prime) & .589 & 61.148 & 54.999 & 9.586 & 305.110 \\
R(Prime) & 4.557 & 2.230 & 1.570 & 2.029 & 1.419 \\
& & & & & \\
M(4) & M(6) & M(8) & \(\mathrm{S}(4)\) & \(\mathrm{S}(6)\) \\
Zeta(Prime) & 204.995 & 310.392 & 238.866 & 294.943 & 126.383 \\
R(Prime) & .861 & .868 & .537 & .532 & .587 \\
& \(1 / F(\) K2 \()\) & RA & QA & H~O(1) &
\end{tabular}


Minor Axis (211.)
Kappa Primes are for Time Meridian 75.
Mean Current
Speed Di
Harmonic Constants (H) and Kappa Prime
\begin{tabular}{crrrrr} 
& \(\mathrm{J}(1)\) & \(\mathrm{K}(1)\) & \(\mathrm{K}(2)\) & \(\mathrm{L}(2)\) & \(\mathrm{M}(1)\) \\
\begin{tabular}{c} 
Kappa \\
Prime \\
H(A)
\end{tabular} & 109.77 & 101.08 & 264.06 & 231.53 & 92.29 \\
& .1432 & 1.7718 & .3482 & .3657 & .1287 \\
& \(\mathrm{M}(2)\) & \(\mathrm{M}(4)\) & \(\mathrm{M}(6)\) & \(\mathrm{M}(8)\) & \(\mathrm{N}(2)\) \\
\begin{tabular}{l} 
Kappa \\
Prime
\end{tabular} & 243.17 & 334.62 & 324.83 & 138.12 & 236.97
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline H (A) & 4.6313 & . 8987 & . 9264 & . 5852 & 2.5573 \\
\hline & (2N) & O(1) & (00) & P (1) & Q (1) \\
\hline Kappa & 230.78 & 83.55 & 118.61 & 99.76 & 74.86 \\
\hline Prime & & & & & \\
\hline H (A) & . 3401 & 1.8127 & . 0779 & . 5865 & . 3517 \\
\hline & (2Q) & R (2) & S (2) & S (4) & S (6) \\
\hline Kappa & 66.17 & 263.26 & 262.49 & 359.94 & 43.88 \\
\hline Prime & & & & & \\
\hline H (A) & . 0471 & . 0102 & 1.2801 & . 5324 & . 5872 \\
\hline & T (2) & LAMBDA & NU (2) & RHO (1) & \\
\hline Kappa & 261.72 & 252.13 & 237.80 & 76.04 & \\
\hline Prime & & & & & \\
\hline H (A) & . 0755 & . 0324 & . 4961 & . 0689 & \\
\hline \multicolumn{6}{|l|}{Harmonic Analysis of Data in 02dspl} \\
\hline \multicolumn{6}{|l|}{29-Day H.A. Beginning 8-19-1990 at Hour 19.08} \\
\hline \multicolumn{2}{|l|}{Ellipse Parameters} & \multicolumn{4}{|l|}{(Right-Handed)} \\
\hline
\end{tabular}

Time Meridian of results \(=75\).


\section*{4. PRED: THE TIDAL PREDICTION AND DETIDING PROGRAM}

\subsection*{4.1. Introduction}

The tidal constituents of a time series are derived using one of the Fourier harmonic analysis programs harm29 or harm15, or the least squares harmonic analysis program Isqha. In order to predict tidal water levels or currents for any specified time period, the tidal prediction program pred is used (Harris, et al., 1965). Pred can also be used to detide a time series in order to obtain the nontidal (residual) water level or current. Pred can detide scalar or vector data in CDF or ASCII formats. The program reads in 37 tidal constituents in the standard predictions format from a control file. The program also accesses a file containing astronomical tidal parameters for each year from 1901 to 2025. Predictions can only be made for a chosen year (i.e., the time period cannot continue into the next year). The program is dimensioned for 90000 data points.

The program is run in a Unix environment as
\[
\text { pred }<\text { pred.ctl }>\text { predout }
\]
where pred.ctl is the control file and predout is the output file. There are two different types of control files depending on whether one is detiding a time series or only making a tidal prediction.
If pred is used to detide a time series, a table of statistics is printed at the end of the predout file. The table gives the root mean square, the mean, and the standard deviation of the observed, predicted, and residual time series. These statistics give a good idea of the proportions of tidal and nontidal energy in the observed time series. However, these proportions are variable, since the strength of the nontidal signal can depend on the season.

An alternate version of pred has been written to use all 175 tidal constituents in Table B to predict and/or detide a time series. It is called pred175 and is run the same way as pred except that the control file has 25 lines of constituents in standard format ( 7 per line) instead of the 6 lines of constituents found in the cons.out files. The 25 lines of constituents can be found in the lsqha output file. The program pred175 accesses a file which contains the astronomical tidal parameters for all 175 constituents for any year from 1901 to 2025.

\subsection*{4.2. Tidal Prediction}

For predicting a scalar tidal series, the control file is in the following format:
```

NSTA IPREDK CONV TCONV IL2
FILEOUT
IEL MO NBDAY TIME MON NEDY TIMEL NOS1 IYEAR XMAJOR
HEADER1
HEADER2
DATUM
1 AMP EPOC AMP EPOC AMP EPOC AMP EPOC AMP EPOC AMP EPOC AMP EPOC
2 AMP EPOC AMP EPOC AMP EPOC AMP EPOC AMP EPOC AMP EPOC AMP EPOC
3 AMP EPOC AMP EPOC AMP EPOC AMP EPOC AMP EPOC AMP EPOC AMP EPOC
4 AMP EPOC AMP EPOC AMP EPOC AMP EPOC AMP EPOC AMP EPOC AMP EPOC
5 AMP EPOC AMP EPOC AMP EPOC AMP EPOC AMP EPOC AMP EPOC AMP EPOC
6 AMP EPOC AMP EPOC

```

For predicting a vector time series, the last nine lines are repeated for the minor axis.
The following is a description of the parameters in the control file for predicting a time series. The first line consists of the following parameters in free format:

NSTA is the number of jobs to be carried out. For multiple jobs (NSTA > 1), all the lines of the control file except the first line are repeated for each job.

IPREDK is for choosing whether to detide an ASCII data file (IPREDK=0), detide a CDF format data file (IPREDK=1), or to do a tidal prediction (IPREDK=2).

CONV is a multiplicative factor for converting the predicted time series to new units (e.g., CONV=30.48 to convert feet to centimeters or CONV=51.444 to convert knots to \(\mathrm{cm} / \mathrm{s}\) ).

TCONV is a time shift in hours to change the time zone of the predictions. The constituent epochs obtained from a harmonic analysis program are usually the modified local epochs (6). (For predictions from constituents in Eastern Standard Time to be shifted to Greenwich time, TCONV=5. For no time shift, TCONV=0.)

IL2 is 0 for using the standard constituent \(\mathrm{L}_{2}\) or is 1 for using \(2 \mathrm{MN}_{2}\) in place of \(\mathrm{L}_{2}\).

The following line is the name of the output file to contain the predicted time series (FILEOUT).

The next line depends on whether one is detiding (IPREDK is 0 or 1 ) or predicting (IPREDK is 2) a time series. For predicting a time series, the next line consists of the following parameters in free format:

IEL is the type of prediction to make. IEL=0 for a vector prediction and IEL=1 for a scalar prediction. For a vector prediction, two sets of tidal constituents are needed.

MO is the beginning month.
NBDAY is the beginning day.
TIME is the beginning time in decimal hours (e.g., 3:30 PM is 15.5).
MON is the ending month.
NEDY is the ending day.
TIMEL is the ending time in decimal hours (e.g., 3:30 PM is 15.5 ).

NOS1 is the number of samples per hour (greater than or equal to 1 ).
IYEAR is the year of the predicted time series. The time series cannot continue into a second year.

XMAJOR is the axis of the first set of tidal constituents. The second set of tidal constituents should be along XMAJOR \(+90 /\). For scalar predictions, the parameter XMAJOR is not relevant, but must be given.

The final nine (or eighteen) lines consist of the output from a harmonic analysis program (the cons.out file). There are two lines containing header information about the station analyzed (HEADER1 and HEADER2). This is followed by a line containing the mean water level or mean current (DATUM). The following six lines are the 37 tidal constituents in standard predictions format. For tidal current constituents, there are nine additional lines containing the headers, mean current, and tidal constituents for the minor axis.

The output in the file named FILEOUT will depend on the parameters IPREDK and IEL. If a scalar time series is predicted (IPREDK = 2 and IEL \$ 1), the columns will be

\section*{TIME PREDICTED}

If a vector time series is predicted (IPREDK \(=2\) and IEL \(=0\) ), the columns will be
SPEED DIRECTION MAJOR MINOR
TIME PREDICTED PREDICTED PREDICTED PREDICTED

The following is an example of a control file to predict a scalar time series. The tidal constituents are in feet and the predicted output will be in meters. There will be one sample per hour for the entire year of 1995 in local time.
```

1 . 3048 0. 0 ! nsta,ipredk,conv,tconv,il2
stp.prd ! Output time series file
11 1 0. 12 31 24. 1 1995 0. ! iel,mo,nbday,time,mon,nedy,timel,nos1,iyear,xmajor
Tampa Bay Oceanography Project
8726520 St. Petersburg
4512

1	533	537	170	663	98	523	5313351	113200	4813291
2	132858	3	394	32829	27426	1	243	302452	143584
3	143464	10	891	52	677	91998	21	9	0
4	2741479	0	0	0	0	263123	893222	5	79
638	9	236							
5	173052	1513373	103266	61942	22842	112682	74	610	
6	31004	73278							

```

The following is an example of a control file to predict a vector time series. The major axis of the constituents is 118 / and the entire year of 1992 will be predicted. The output time series will be hourly in local time.
```

12 1. 0. 0 ! nsta,ipredk,conv,tconv,il2
egm.prd ! Output time series file
0 1 1 0. 12 31 23. 1 1992 118. ! iel,mo,nbday,time,mon,nedy,time1,nos1,iyear,xmajor
Tampa Bay Oceanography Project
C-2 Inner Egmont Channel 8/20/90 - 9/22/91
1801
1533483360188803418101863288315872515 24703773267002446 1032059
2 0 0 10292747 0 0 20073299 1031979 0
11322585 3613384 0 0 19042481 21102549
4 0 0 0 0 0 0 0 0 10292417 51452413 11323416 1553420
6692378104442510 0 0 0 0 14413234 0
2583064
Tampa Bay Oceanography Project
C-2 Inner Egmont Channel 8/20/90 - 9/22/91
206

27782797	11842790	4122606	14411412	5153293	11321244	5153226			
0	0	1032595	0	0	1032638	1551662	0	0	522534
521609	12799	0	0	1031308	1031475				
0	0	0	0	0	0	521194	1551185	522787	12790
11131	4631401	0	0	0	0	522551	0	0	3092796

 1551778
    ```

\subsection*{4.3. Detiding a Time Series}

For detiding a scalar time series, the control file is in the following format:
NSTA IPREDK CONV TCONV IL2
FILEIN
FILEOUT
IEL ISKIP CONVD XMAXD IYEAR XMAJOR
HEADER1
HEADER2
DATUM
1 AMP EPOC AMP EPOC AMP EPOC AMP EPOC AMP EPOC AMP EPOC AMP EPOC
2 AMP EPOC 3 AMP EPOC AMP EPOC AMP EPOC AMP EPOC AMP EPOC AMP EPOC AMP EPOC
4 AMP EPOC 5 AMP EPOC 6 AMP EPOC AMP EPOC

For detiding a vector time series, the last nine lines are repeated for the minor axis.
The following is a description of the parameters in the control file for detiding a time series. The first line consists of the following parameters in free format:

NSTA is the number of jobs to be carried out. For multiple jobs (NSTA > 1), all the lines of the control file except the first line are repeated for each job.

IPREDK is for choosing whether to detide an ASCII data file (IPREDK=0), detide a CDF format data file (IPREDK=1), or to do a tidal prediction (IPREDK=2).

CONV is a multiplicative factor for converting the predicted time series to new units (e.g., CONV \(=30.48\) to convert feet to centimeters or CONV=51.444 to convert knots to \(\mathrm{cm} / \mathrm{s}\) ).

TCONV is a time shift in hours to change the time zone of the predictions. The constituent epochs obtained from a harmonic analysis program are usually the modified local epochs (6). (For predictions from constituents in Eastern Standard Time to be shifted to Greenwich time, TCONV=5. For no time shift, TCONV=0.)

IL2 is 0 for using the standard constituent \(\mathrm{L}_{2}\) or is 1 for using \(2 \mathrm{MN}_{2}\) in place of \(\mathrm{L}_{2}\).

If IPREDK is 0 or 1 , the next line is the name of the file with the time series to be detided (FILEIN).

The following line is the name of the output file to contain the observed, predicted, and residual time series (FILEOUT).

The next line depends on whether one is detiding (IPREDK is 0 or 1 ) or predicting (IPREDK is 2) a time series. For detiding, the next line consists of the following parameters in free format:

IEL indicates the type of the input data. IEL \(=0\) for vector data or IEL \(>0\) for scalar data. If the input data is scalar data in a CDF file (IPREDK=1), IEL should be the CDF field number of the values to be detided (e.g., IEL=3 for temperature, IEL=4 for conductivity, or IEL=6 for pressure).

ISKIP is the number of data points to skip in the time series to be detided.
CONVD is a multiplicative factor to convert the time series to be detided to new units (e.g., CONVD \(=30.48\) to convert feet to centimeters or CONVD \(=51.444\) to convert knots to \(\mathrm{cm} / \mathrm{s}\) ).

XMAXD is the maximum acceptable value in the input time series. For values higher than XMAXD, a 999 is output as the residual.

IYEAR is the year of the input time series. The time series to be detided cannot continue into a second year.

XMAJOR is the axis of the first set of tidal constituents. The second set of tidal constituents should be along XMAJOR+90/. For scalar data, the parameter XMAJOR is not relevant, but must be given.

The final nine (or eighteen) lines consist of the output from a harmonic analysis program (the cons.out file). There are two lines containing header information about the station analyzed (HEADER1 and HEADER2). This is followed by a line containing the mean water level or mean current (DATUM). The following six lines are the 37 tidal constituents in standard predictions format. For tidal current constituents, there are nine additional lines containing the headers, mean current, and tidal constituents for the minor axis.

The output in the file named FILEOUT will depend on the parameters IPREDK and IEL. If a scalar time series is detided (IPREDK \# 1 and IEL \$ 1), the columns will be

TIME OBSERVED PREDICTED RESIDUAL
If a vector time series is detided (IPREDK \# 1 and IEL \(=0\) ), the columns will be
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & MAJOR & MAJOR & MAJOR & MINOR & MINOR & MINOR \\
\hline TIME & SERVED & ICT & IDU & SERV & EDIC & SIDU \\
\hline
\end{tabular}

The following is an example of a control file to detide a scalar time series in a ASCII file. The constituents are in cm . The output time series will be in local time.
```

1 1. 0. 0 ! nsta, ipredk, conv, tconv, il2
505.Wll ! Name of file to be detided
505.det ! Output time series file
1 0 1. 200. 1995 0. ! iel, iskip, convd, xmaxd, iyear, xmajor
Harmonic Analysis of Data in 505.wll
Least Squares H.A. Beginning 1- 1-1995 at Hour .00
77272
1 5980 531 1272 446 1312 290115551040 399354611911 965 663256
2 267 526 491796 2893279 1703329 1081361 2402955 5732653
3 18141119 204 593 2002046 10651962 491 680 2108326711944 416
4138301212 18921882 7293592 819 428 2314 660 215 936 401825
5 982658 32311087 1541741 2182741 531
6 71 827 3473258

```

The following is an example of a control file to detide a vector time series in a CDF format file. The constituents are in \(\mathrm{cm} / \mathrm{s}\) and the major axis is \(58 /\). The output time series will be shifted into Greenwich time.
```

1 1 1. 5. 0 ! nsta, ipredk, conv, tconv, il2
/dir6/cdf/PROJTAMPAB/tr1010/file11 ! Name of file to be detided
sunsky.det ! Output time series file
0 1. 150. 1990 58. ! iel, iskip, convd, maxd, iyear, xmajor
Tampa Bay Oceanography Project
C-3 Sunshine Skyway 8/22/90 - 6/11/91
5300
1489933394174433495 87413383272632514 17723242216492485 3231515
2 32692436 6973085 3503050 22223317 1072916 19511818 7332404

```

```

 4 3632667 7433408 7831627 13742133 39692468 852
 5 5322311 78282489 9042320 5881348 27023397 2948257977873471
 6 1632175 8153340
 Tampa Bay Oceanography Project
C-3 Sunshine Skyway 8/22/90 - 6/11/91
1820

| 1 | 696665 | 198917 | 151553 | 5222024 | 4953220 | 3392019 | 852959 | |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 2 | 5092242 | 403134 | 2043338 | 543210 | 191338 | 1813160 | 158974 | |
| 3 | 1222485 | 73 | 974 | 3682047 | 561333 | 65126 | 5293595 | 5882001 |
| 4 | 3541336 | 552 | 273 | 1131742 | 92182 | 1231850 | 255638 | 2781856 |
| 5 | 1053223 | 2501914 | 682953 | 493041 | 30807 | 5302373 | 1893287 | |

```

\section*{The following is a sample output file:}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{8}{|l|}{Minutes between samples is calculated to be 10.000} \\
\hline \multicolumn{8}{|l|}{Number of samples per hour is 6} \\
\hline \multicolumn{3}{|l|}{Start time for predictions is} & 234 & 8 & 22 & 14.91667 & 90 \\
\hline \multicolumn{3}{|l|}{Stop time for predictions is} & 365 & 12 & 31 & 24.00000 & \\
\hline \multicolumn{8}{|l|}{NPTS = 18919} \\
\hline \multicolumn{8}{|l|}{Tampa Bay Oceanography Project} \\
\hline \multicolumn{8}{|l|}{C-3 Sunshine Skyway 8/22/9} \\
\hline \multicolumn{8}{|l|}{Values of the Epochs before 5.00 hour time sh} \\
\hline \multirow[t]{2}{*}{Constituen} & & Kappa & & & & & \\
\hline & \multicolumn{2}{|l|}{H(A) Prime} & & & & & \\
\hline M (2) & 48.993 & 339.40 & & & & & \\
\hline S (2) & 17.443 & 349.50 & & & & & \\
\hline N(2) & 8.741 & 338.30 & & & & & \\
\hline K (1) & 27.263 & 251.40 & & & & & \\
\hline M ( 4 ) & 1.772 & 324.20 & & & & & \\
\hline O (1) & 21.649 & 248.50 & & & & & \\
\hline M ( 6) & . 323 & 151.50 & & & & & \\
\hline MK (3) & 3.269 & 243.60 & & & & & \\
\hline S (4) & . 697 & 308.50 & & & & & \\
\hline MN (4) & . 350 & 305.00 & & & & & \\
\hline NU (2) & 2.222 & 331.70 & & & & & \\
\hline S (6) & . 107 & 291.60 & & & & & \\
\hline MU (2) & 1.951 & 181.80 & & & & & \\
\hline 2N(2) & . 733 & 240.40 & & & & & \\
\hline OO(1) & . 812 & 263.00 & & & & & \\
\hline LAMBDA (2) & 1.044 & 35.40 & & & & & \\
\hline S (1) & 3.921 & 317.10 & & & & & \\
\hline M (1) & . 664 & 334.10 & & & & & \\
\hline J (1) & 1.077 & 271.40 & & & & & \\
\hline MM & . 787 & 7.30 & & & & & \\
\hline SSA & . 496 & 147.70 & & & & & \\
\hline SA & . 363 & 266.70 & & & & & \\
\hline MSF & . 743 & 340.80 & & & & & \\
\hline MF & . 783 & 162.70 & & & & & \\
\hline RHO (1) & 1.374 & 213.30 & & & & & \\
\hline Q (1) & 3.969 & 246.80 & & & & & \\
\hline T (2) & . 852 & 6.50 & & & & & \\
\hline R (2) & . 725 & 336.50 & & & & & \\
\hline 2Q (1) & . 532 & 231.10 & & & & & \\
\hline P (1) & 7.828 & 248.90 & & & & & \\
\hline 2SM (2) & . 904 & 232.00 & & & & & \\
\hline M (3) & . 588 & 134.80 & & & & & \\
\hline L (2) & 2.702 & 339.70 & & & & & \\
\hline 2MK3 (3) & 2.948 & 257.90 & & & & & \\
\hline K (2) & 7.787 & 347.10 & & & & & \\
\hline M (8) & . 163 & 217.50 & & & & & \\
\hline MS (4) & . 815 & 334.00 & & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Opening yea 1990 & card fi & \[
1990
\] & & & & & \\
\hline . 977 & 259.400 & 1.000 & . 000 & . 977 & 324.300 & 1.080 & 16.600 \\
\hline . 954 & 158.800 & 1.128 & 240.100 & . 932 & 58.100 & 1.055 & 276.000 \\
\hline 1990 & 0 & 2 & & & & & \\
\hline 1.000 & . 000 & . 954 & 223.700 & . 977 & 92.200 & 1.000 & . 000 \\
\hline . 977 & 157.100 & . 977 & 29.200 & 1.505 & 338.300 & . 977 & 246.600 \\
\hline 1990 & 0 & 3 & & & & & \\
\hline 1.000 & 180.000 & 1.333 & 85.400 & 1.120 & 314.300 & . 918 & 295.100 \\
\hline 1.000 & 200.800 & 1.000 & 280.400 & . 977 & 100.600 & 1.303 & 319.100 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline 1990 & \multicolumn{3}{|c|}{0 4} & \multirow[b]{2}{*}{1.000} & \multirow[b]{2}{*}{2.400} & \multirow[b]{2}{*}{1.000} & \multirow[b]{2}{*}{177.600} \\
\hline 1.128 & 72.900 & 1.128 & 305.100 & & & & \\
\hline 1.128 & 10.000 & 1.000 & 349.600 & . 977 & 100.600 & . 966 & 29.100 \\
\hline 1990 & 0 & \multicolumn{2}{|l|}{5} & \multirow[b]{2}{*}{1.202} & \multirow[b]{2}{*}{213.900} & \multirow[b]{2}{*}{. 911} & \multirow[b]{2}{*}{317.500} \\
\hline 1.219 & 2.200 & 1.030 & 142.100 & & & & \\
\hline . 977 & 259.400 & \multicolumn{2}{|l|}{\multirow[b]{2}{*}{1.2736130 .700}} & \multirow[t]{2}{*}{. 977} & \multirow[t]{2}{*}{269.800} & \multirow[t]{2}{*}{1.102} & \multirow[t]{2}{*}{212.000} \\
\hline 1990 & 0 & & & & & & \\
\hline 1.128 & 99.100 & 1.128 & 119.900 & . 954 & 295.100 & . 954 & 223.700 \\
\hline 1.128 & 229.800 & 1.174 & 113.300 & . 954 & 288.600 & \multirow[t]{2}{*}{1.164} & \multirow[t]{2}{*}{225.900} \\
\hline 1990 & 0 & \multicolumn{2}{|l|}{77} & & 288.600 & & \\
\hline 1.164 & 160.900 & 1.174 & 314.500 & 1.379 & 91.000 & 1.432 & 115.500 \\
\hline 1.412 & 327.200 & 1.147 & 211.000 & \multirow[t]{2}{*}{1.379} & \multirow[t]{2}{*}{2.900} & \multirow[t]{2}{*}{1.128} & \multirow[t]{2}{*}{240.100} \\
\hline 1990 & 0 & \multicolumn{2}{|l|}{8} & & & & \\
\hline 1.080 & 16.600 & 1.102 & 204.400 & 1.174 & 113.300 & . 977 & 324.300 \\
\hline 1.164 & 160.900 & . 932 & 58.100 & 1.191 & 261.600 & \multirow[t]{2}{*}{. 954} & \multirow[t]{2}{*}{288.600} \\
\hline 1990 & 0 & \multicolumn{2}{|l|}{9} & & & & \\
\hline 1.219 & 2.200 & 1.077 & 103.800 & 1.077 & 38.900 & \multirow{3}{*}{1.932} & 175.400 \\
\hline 1.055 & 276.000 & 1.268 & 129.900 & \multirow[t]{2}{*}{. 954} & \multirow[t]{2}{*}{148.400} & & \multirow[t]{2}{*}{68.500} \\
\hline 1990 & 0 & \multicolumn{2}{|l|}{10} & & & & \\
\hline 1.030 & 240.300 & . 977 & 259.400 & . 932 & 123.100 & . 954 & 223.700 \\
\hline . 954 & 158.800 & 1.137 & 190.100 & \multirow[t]{2}{*}{. 932} & \multirow[t]{2}{*}{188.000} & \multirow[t]{2}{*}{1.191} & \multirow[t]{2}{*}{261.600} \\
\hline 1990 & 0 & \multicolumn{2}{|l|}{11} & & & & \\
\hline 1.164 & 160.900 & 1.174 & 113.300 & 1.137 & 125.200 & 1.137 & 60.300 \\
\hline 1.147 & 12.700 & 1.052 & 3.200 & \multirow[t]{2}{*}{1.007} & \multirow[t]{2}{*}{204.600} & \multirow[t]{2}{*}{1.077} & \multirow[t]{2}{*}{38.900} \\
\hline 1990 & 0 & \multicolumn{2}{|l|}{12} & & & & \\
\hline 1.325 & 353.400 & . 932 & 123.100 & . 932 & 58.100 & . 954 & 158.800 \\
\hline . 911 & 87.300 & . 911 & 22.400 & \multirow[t]{2}{*}{1.164} & \multirow[t]{2}{*}{160.900} & \multirow[t]{2}{*}{1.111} & \multirow[t]{2}{*}{319.700} \\
\hline 1990 & 0 & \multicolumn{2}{|l|}{13} & & & & \\
\hline 1.137 & 60.300 & 1.121 & 272.000 & 1.147 & 12.700 & . 983 & 104.000 \\
\hline . 983 & 39.100 & . 983 & 334.200 & \multirow[t]{2}{*}{1.007} & \multirow[t]{2}{*}{74.800} & \multirow[t]{2}{*}{. 890} & \multirow[t]{2}{*}{281.800} \\
\hline 1990 & 0 & \multicolumn{2}{|l|}{14} & & & & \\
\hline . 890 & 216.900 & . 911 & 22.400 & . 911 & 317.500 & 1.137 & 60.300 \\
\hline . 932 & 58.100 & . 983 & 334.200 & . 890 & 281.800 & . 890 & 216.900 \\
\hline 1990 & 0 & 15 & & & & & \\
\hline 1.111 & 319.700 & . 911 & 317.500 & & & & \\
\hline
\end{tabular}

Total number of prediction times \(=18919\)
Year 1990 Datum 5.300 No. of Constituents 37 checksum -.0268917
Harmonic Constants (Major Axis) ------
\begin{tabular}{lrr} 
M (2) & 48.993 & 124.32 \\
S (2) & 17.443 & 139.50 \\
N (2) & 8.741 & 120.50 \\
K (1) & 27.263 & 326.61 \\
M (4) & 1.772 & 254.04 \\
O(1) & 21.649 & 318.22 \\
M(6) & .323 & 226.26 \\
MK (3) & 3.269 & 103.73 \\
S(4) & .697 & 248.50 \\
MN (4) & .350 & 232.12 \\
NU (2) & 2.222 & 114.26 \\
S(6) & .107 & 21.60 \\
MU (2) & 1.951 & 321.64 \\
2N (2) & .733 & 19.88 \\
OO(1) & .812 & 343.70 \\
LAMBDA (2) & 1.044 & 182.68 \\
S(1) & 3.921 & 32.10 \\
M(1) & .664 & 46.58 \\
J (1) & 1.077 & 349.33 \\
MM & .787 & 10.02 \\
SSA & .496 & 148.11 \\
SA & .363 & 266.91 \\
MSF & .743 & 345.88 \\
MF & .783 & 168.19 \\
RHO (1) & 1.374 & 280.66
\end{tabular}
\begin{tabular}{lrr} 
Q (1) & 3.969 & 313.79 \\
\(\mathrm{~T}(2)\) & .852 & 156.29 \\
\(\mathrm{R}(2)\) & .725 & 126.71 \\
\(2 \mathrm{Q}(1)\) & .532 & 295.37 \\
\(\mathrm{P}(1)\) & 7.828 & 323.69 \\
2SM(2) & .904 & 27.08 \\
M \((3)\) & .588 & 352.18 \\
\(\mathrm{~L}(2)\) & 2.702 & 127.34 \\
2MK3 (3) & 2.948 & 112.54 \\
\(\mathrm{~K}(2)\) & 7.787 & 137.51 \\
M(8) & .163 & 77.18 \\
MS (4) & .815 & 268.92
\end{tabular}

Tampa Bay Oceanography Project
C-3 Sunshine Skyway \(8 / 22 / 90-6 / 11 / 91\)
Values of the Epochs before 5.00 hour time shift

\begin{tabular}{lll}
\(\mathrm{M}(2)\) & .696 & 211.42 \\
\(\mathrm{~S}(2)\) & .198 & 241.70
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline N (2) & . 151 & 197.50 \\
\hline K (1) & . 522 & 277.61 \\
\hline M (4) & . 495 & 251.84 \\
\hline O(1) & . 339 & 271.62 \\
\hline M (6) & . 085 & 10.66 \\
\hline MK (3) & . 509 & 84.33 \\
\hline S (4) & . 040 & 253.40 \\
\hline MN (4) & . 204 & 260.92 \\
\hline NU (2) & . 054 & 103.56 \\
\hline S (6) & . 019 & 223.80 \\
\hline MU (2) & . 181 & 95.84 \\
\hline 2N(2) & . 158 & 236.88 \\
\hline OO(1) & . 122 & 329.20 \\
\hline LAMBDA (2) & . 073 & 244.68 \\
\hline S (1) & . 368 & 279.70 \\
\hline M (1) & . 056 & 205.78 \\
\hline J (1) & . 065 & 90.53 \\
\hline MM & . 529 & 2.22 \\
\hline SSA & . 588 & 200.51 \\
\hline SA & . 354 & 133.81 \\
\hline MSF & . 552 & 32.38 \\
\hline MF & . 113 & 179.69 \\
\hline RHO (1) & . 092 & 85.56 \\
\hline Q (1) & . 123 & 251.99 \\
\hline T (2) & . 255 & 213.59 \\
\hline R (2) & . 278 & 335.81 \\
\hline 2 L (1) & . 105 & 26.57 \\
\hline P(1) & . 250 & 266.19 \\
\hline 2SM (2) & . 068 & 90.38 \\
\hline M (3) & . 049 & 161.48 \\
\hline L (2) & . 030 & 228.34 \\
\hline 2MK3 (3) & . 530 & 91.94 \\
\hline K (2) & . 189 & 119.11 \\
\hline M (8) & . 066 & 73.88 \\
\hline MS (4) & . 409 & 271.42 \\
\hline
\end{tabular}


\section*{5. GI AND GIPLOT: THE GREENWICH INTERVAL PROGRAMS}

\subsection*{5.1. Introduction}

Greenwich intervals are the periods between the moon's transit over the Greenwich meridian and the arrival of each tidal phase at a station. Comparing Greenwich intervals is a standard method of looking at the timing of tidal phases anywhere in the world. The program gi will calculate the mean Greenwich intervals for maximum flood currents (MFC), slack before ebb currents (SBE), maximum ebb currents (MEC), and slack before flood currents (SBF). It will also produce the mean current speed and direction for the four current phases. The program does not calculate Greenwich intervals for scalar data such as water levels. The input time series must be continuous since the data is interpolated to a 1 -minute time interval using cubic splines. The program can be run individually for several continuous segments. The program is dimensioned for 105410 data points which is equivalent to 366 days of 5-minute data. There are three parts to the program.

The first part of gi reads in a time series of current data. A scaling factor and a time shift are requested in order to put the time series into \(\mathrm{cm} / \mathrm{s}\) and GMT. If a predicted tidal series is read in, no filtering is necessary. If the data are observed speeds and directions, the subroutine filter can be used to apply a Fourier filter to the data (see GI Examples 1 and 2). The purpose of filtering an observed time series is to remove high frequency noise and low frequency nontidal signals to produce a smooth time series which is mainly tidal. A good filter to use is a 3 to 36 hour band pass filter. High-pass or band-pass filters will remove the mean current (which can be added back in for the subsequent analysis). The \(u\) and \(v\) components of the mean current are printed along with a \(95 \%\) confidence interval. If the mean current is significant (i.e. the confidence intervals do not include zero), the mean current should be added back to the time series. A output file ( \(\left.{ }^{*} . f l t\right)\) is created containing the filtered time series.

The second part of gi (the subroutine calctep) picks the maximum and minimum currents in the time series, adds in the mean current if desired, sorts the maximum currents into flood or ebb currents (MFC or MEC), and labels the minimum currents as slack before flood (SBF), slack before ebb (SBE), slack between two floods (SFC), or slack between two ebbs (SEC). Any maximum flood or ebb current with a speed less than 0.25 knots \((12.86 \mathrm{~cm} / \mathrm{s})\) is labeled SLC. The output file ( \({ }^{*} . t c p\) ) gives the time, speed, and direction of each pick. SFC, SEC, and SLC are not used in any subsequent calculations.

The third part of gi (the subroutine gicalc) reads in a Greenwich moon transits file (for 1985 to 2010) and subtracts the times in the *.tcp file from the previous moon transit. Each moon transit is printed in an output file ( \({ }^{*} . g i\) ), followed by the tidal phases that occur before the next moon transit. The mean Greenwich intervals, current speeds, and current directions for MFC, SBE, MEC, and SBF are calculated and printed at the end of the *.gi output file.

If there are several deployments at the same station, a *.tcp file can be obtained for each deployment. Then, mean Greenwich intervals for the station can be determined by concatenating
all the *.tcp files together (in chronological order) and running gi using option 0 . The first two parts of gi will be skipped and only the third part will be run (see GI Example 3).

\subsection*{5.2. Creating Plots}

A second output file ( \({ }^{*}\).plt) is produced by gi with the Greenwich interval, current speed, and current direction of each individual pick in a format that can be used by a plotting program called giplot. Giplot uses commands from the DISSPLA graphics package. Giplot displays the changes to the means and the confidence intervals as each pick is added to the summation.
Giplot will plot the Greenwich intervals and current velocities as capital letters ( F and E ) for MFC and MEC and small letters (f and e) for SBF and SBE. The Greenwich intervals can be plotted on a semidiurnal scale (see GIPLOT Example 1) or on a diurnal scale which distinguishes upper (U) and lower (L) moon transits (see GIPLOT Example 2). The current speeds can be plotted along any directional axis although the most meaningful choice would be the principal current direction (see GIPLOT Example 3).

\section*{GI Example 1}

Interactive execution of the program. Gray shading indicates the input to be typed in by the user.
```

 If you:
 Enter
 already have a tidal current parameters file (*.tcp) (0)
 want to read a CDF data file (1)
 want to read an ASCII data file (time,spd,dir)
 1
Enter the root for all the output filenames
t0218
Enter 1 to filter input data or 0 not to filter input data
1
Enter the name of the input data file
/dir6/cdf/PROJTAMPAB/t02010/file18
Enter number of data points to skip and to read in
149 9500
Enter number of sample(s) per hour for the input data
6
Enter scaling factor and time shift (hrs) to put input data into cm/s and GMT

1. 0.
Enter filtering option (1) for low-pass filtering
(2) for high-pass filtering
(3) for band-pass filtering
3
Enter cut-off periods in hours (shorter period, then longer period)
3 36
U velocity (eastward) 3.47 2.56 4.37 45.09
V velocity (northward) -3.25 -3.81 -2.70 27.70
Filtering has removed the mean current
Enter 1 to add it back or 0 not to add it back
1
Enter the flood current direction ==>
118
```

Alternatively, the gi program can also be run with the following control file (gil.ctl).
```

1
t0219
1
/dir6/cdf/PROJTAMPAB/t02010/file18
149 9500
6

1. 0.

3
3 36
1
1 1 8

```
```

! Type of analysis (0, 1, or 2)
! Root for all output filenames
! Filter the data ? (0=no, 1=yes)
! Input data filename
! Number of points to skip and read in
! Number of samples per hour for input
! Scaling factor and time shift for data
! Filtering option (1=hi, 2=lo, 3=band)
! Filtering cutoff period(s)
! Add back mean currents ? (0=no, 1=yes)
! Flood current direction

```

Filtered output file ( \(t 0218 . \mathrm{flt}\) ):
```

232.00348 28.919 288.010 -27.502
8.942

```
\begin{tabular}{lllll}
232.01042 & 37.150 & 288.620 & -35.205 & 11.862 \\
232.01736 & 43.760 & 289.233 & -41.318 & 14.415 \\
232.02431 & 48.409 & 289.859 & -45.530 & 16.445 \\
232.03125 & 50.844 & 290.500 & -47.624 & 17.806 \\
232.03819 & 50.917 & 291.151 & -47.487 & 18.372 \\
232.04515 & 48.598 & 291.801 & -45.123 & 18.049 \\
232.05209 & 43.971 & 292.433 & -40.644 & 16.779 \\
232.05904 & 37.230 & 293.008 & -34.268 & 14.552 \\
232.06598 & 28.667 & 293.438 & -26.302 & 11.403
\end{tabular}

Tidal current parameters output file (t0218.tcp):
\begin{tabular}{rrrrrrrr}
1990 & 8 & 20 & 0 & 50 & MEC & 51.18 & 290.82 \\
1990 & 8 & 20 & 2 & 2 & SBF & .94 & 171.99 \\
1990 & 8 & 20 & 4 & 7 & MFC & 81.91 & 126.13 \\
1990 & 8 & 20 & 7 & 28 & SBE & 10.77 & 40.63 \\
1990 & 8 & 20 & 10 & 29 & MEC & 46.94 & 293.62 \\
1990 & 8 & 20 & 12 & 50 & SBF & 4.74 & 221.08 \\
1990 & 8 & 20 & 15 & 43 & MFC & 99.95 & 123.30 \\
1990 & 8 & 20 & 18 & 50 & SBE & 6.22 & 35.54 \\
1990 & 8 & 20 & 21 & 59 & MEC & 116.23 & 303.12 \\
1990 & 8 & 21 & 2 & 7 & SBF & 6.08 & 210.76
\end{tabular}

Greenwich intervals output file ( \(t 0218 . g i\) ):

\begin{tabular}{ccccccc} 
& \begin{tabular}{c} 
Greenwich \\
Interval
\end{tabular} & \begin{tabular}{c}
\(95 \%\) Conf \\
Interval
\end{tabular} & \begin{tabular}{c} 
Standard \\
Deviation
\end{tabular} & \begin{tabular}{c} 
Mean \\
\((\mathrm{cm} / \mathrm{s})\)
\end{tabular} & \begin{tabular}{c} 
Speed \\
\((\) knots \()\)
\end{tabular} & \begin{tabular}{c} 
Mean \\
Direction
\end{tabular} \\
MFC & 4.11 & 3.86 & 4.35 & 1.45 & 74.38 & 1.446
\end{tabular}
\begin{tabular}{rrrrrrrr} 
MEC & 10.13 & 9.93 & 10.32 & 1.00 & 69.06 & 1.342 & 301. \\
SBF & 1.37 & 1.19 & 1.56 & .95 & 3.59 & .070 & 206.
\end{tabular}

Greenwich intervals plotting file (t0218.plt):
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 232.916 & MECU & 10.0 & 11.5 & 16.1 & 6.9 & -97.3 & -62.7 & 9.7 & -135.2 & 63.5 & 33.5 & 96.1 \\
\hline 233.088 & SBFL & 1.7 & 1.7 & 3.6 & -. 3 & -3.1 & -2.0 & 2.5 & -6. 5 & -5.2 & -3.2 & 2.0 \\
\hline -8.5 & & & & & & & & & & & & \\
\hline 233.206 & MFCL & 4.6 & 4.3 & 5.4 & 3.1 & 82.2 & 77.3 & 100.6 & 54.0 & -59.8 & -54.3 & -40.4 \\
\hline -68.2 & & & & & & & & & & & & \\
\hline 233.333 & SBEL & 7.6 & 7.4 & 8.7 & 6.2 & 4.9 & 5.2 & 9.3 & 1.1 & 12.3 & 8.5 & 17.3 \\
\hline -. 3 & & & & & & & & & & & & \\
\hline 233.453 & MECL & 10.5 & 11.3 & 13.9 & 8.7 & -45.7 & -58.5 & -17.4 & -99.5 & 26.9 & 31.9 & 65.8 \\
\hline -2.1 & & & & & & & & & & & & \\
\hline 233.542 & SBFU & . 3 & 1.3 & 2.9 & -. 2 & -2.8 & -2.2 & . 3 & -4.7 & -3.6 & -3.3 & . 5 \\
\hline -6.2 & & & & & & & & & & & & \\
\hline 233.673 & MFCU & 3.4 & 4.1 & 5.0 & 3.1 & 90.5 & 80.6 & 96.9 & 64.4 & -59.6 & -55.6 & -47.1 \\
\hline -64.2 & & & & & & & & & & & & \\
\hline 233.817 & SBEU & 6.8 & 7.3 & 8.1 & 6.5 & 6.9 & 5.6 & 8.2 & 3.0 & 9.9 & 8.9 & 13.7 \\
\hline 4.0 & & & & & & & & & & & & \\
\hline 233.944 & MECU & 9.9 & 11.0 & 12.9 & 9.1 & -82.0 & -63.2 & -32.4 & -94.0 & 52.4 & 36.0 & 61.7 \\
\hline 10.3 & & & & & & & & & & & & \\
\hline 234.112 & SBFL & 1.5 & 1.4 & 2.4 & . 3 & -. 8 & -1.9 & -. 1 & -3.8 & -3.1 & -3.3 & -1.4 \\
\hline -5.2 & & & & & & & & & & & & \\
\hline
\end{tabular}

\section*{GI Example 2}

ASCII input data file ( \(c 2 . s d\) ):
```

232.00002 61.699 291.669
232.00697 63.734 286.594
232.01392 58.706 281.763
232.02086 53.519 281.877
232.02780 49.371 284.210
232.03474 47.539 282.534
232.04169 40.620 281.848
232.04865 34.065 280.665
232.05559 24.223 284.680
232.06253 15.575 289.734

```

Interactive execution of the program. Gray shading indicates the input to be typed in by the user.
```

 If you:
 Enter
 already have a tidal current parameters file (*.tcp) (0)
 want to read a CDF data file
 (1)
 want to read an ASCII data file (time,spd,dir)
 2
Enter the root for all the output filenames
c0218
Enter 1 to filter input data or 0 not to filter input data
1
Enter the name of the input data file
c2.sd
Enter year of first data point (e.g. 1990)

```
```

1 9 9 0
Enter number of sample(s) per hour for the input data
6
Enter scaling factor and time shift (hrs) to put input data into cm/s and GMT

1. 0.
Enter filtering option (1) for low-pass filtering
(2) for high-pass filtering
(3) for band-pass filtering
3
Enter cut-off periods in hours (shorter period, then longer period)
36
U velocity (eastward) Mean
V velocity (northward) -3.25 -3.81 -2.69 27.70
Filtering has removed the mean current
Enter 1 to add it back or 0 not to add it back
1
Enter the flood current direction ==>
118
```

Alternatively, the gi program can also be run with the following control file (gi2.ctl).
```

2
c0219
1
c2.sd
1990
6
3 36
36
1
1 1 8

```
```

! Type of analysis (0, 1, or 2)

```
! Type of analysis (0, 1, or 2)
! Root for all output filenames
! Root for all output filenames
! Filter the data ? (0=no, 1=yes)
! Filter the data ? (0=no, 1=yes)
! Input data filename
! Input data filename
! Year of first data point
! Year of first data point
! Number of samples per hour for input
! Number of samples per hour for input
! Scaling factor and time shift for data
! Scaling factor and time shift for data
! Filtering option (1=hi, 2=lo, 3=band)
! Filtering option (1=hi, 2=lo, 3=band)
! Filtering cutoff period(s)
! Filtering cutoff period(s)
! Add back mean currents ? (0=no, 1=yes)
! Add back mean currents ? (0=no, 1=yes)
! Flood current direction
```

! Flood current direction

```

\section*{Filtered output file (c0218.flt):}
\begin{tabular}{rrrrr}
232.00002 & 28.491 & 288.560 & -27.009 & 9.069 \\
232.00697 & 37.753 & 288.751 & -35.749 & 12.136 \\
232.01392 & 45.457 & 289.087 & -42.958 & 14.865 \\
232.02086 & 51.226 & 289.516 & -48.283 & 17.113 \\
232.02780 & 54.773 & 290.012 & -51.466 & 18.744 \\
232.03474 & 55.916 & 290.561 & -52.354 & 19.638 \\
232.04169 & 54.591 & 291.152 & -50.913 & 19.699 \\
232.04865 & 50.851 & 291.773 & -47.224 & 18.862 \\
232.05559 & 44.865 & 292.407 & -41.478 & 17.102 \\
232.06253 & 36.902 & 293.024 & -33.963 & 14.433
\end{tabular}

Tidal current parameters output file (c0218.tcp):
\begin{tabular}{rrrrrrrr}
1990 & 8 & 20 & 0 & 50 & MEC & 55.92 & 290.56 \\
1990 & 8 & 20 & 2 & 4 & SBF & .53 & 229.11 \\
1990 & 8 & 20 & 4 & 17 & MFC & 81.73 & 126.20 \\
1990 & 8 & 20 & 7 & 33 & SBE & 10.85 & 41.75 \\
1990 & 8 & 20 & 10 & 31 & MEC & 46.84 & 293.69 \\
1990 & 8 & 20 & 12 & 55 & SBF & 4.70 & 219.95 \\
1990 & 8 & 20 & 15 & 47 & MFC & 100.06 & 123.28 \\
1990 & 8 & 20 & 18 & 55 & SBE & 6.21 & 35.36 \\
1990 & 8 & 20 & 22 & 5 & MEC & 116.37 & 303.11
\end{tabular}
```

1990 8 21 2 13 SBF 6.10 205.76

```

Greenwich intervals output file (c0218.gi):

\begin{tabular}{ccrrcrrr} 
& \begin{tabular}{l} 
Greenwich \\
Interval
\end{tabular} & \multicolumn{2}{c}{\begin{tabular}{c}
\(95 \%\) Conf \\
Interval
\end{tabular}} & \begin{tabular}{c} 
Standard \\
Deviation
\end{tabular} & \begin{tabular}{c} 
Mean \\
\((\mathrm{cm} / \mathrm{s})\)
\end{tabular} & \begin{tabular}{c} 
Speed \\
\((k n o t s)\)
\end{tabular} & \begin{tabular}{c} 
Mean \\
Direction
\end{tabular} \\
MFC & 4.19 & 3.94 & 4.44 & 1.45 & 74.39 & 1.446 & 123. \\
SBE & 7.13 & 6.92 & 7.33 & 1.07 & 5.68 & .110 & 30. \\
MEC & 10.21 & 10.02 & 10.40 & 1.00 & 69.11 & 1.343 & 301. \\
SBF & 1.46 & 1.27 & 1.64 & .95 & 3.58 & .070 & 206.
\end{tabular}

Greenwich intervals plotting file (c0218.plt):
```

232.920 MECU 10.1 11.6 16.1 7.1 -97.5 -64.2 6.0-134.5 63.6 34.0 95.7
-27.6
233.092 SBFL 1.8 1.8 3.6 -. 1 -2.7 -2.0 1.4 1.4 -5.4 -5.5
-9.4
233.210 MFCL 4.6 4.4 5.6 3.2 82.0 77.2 100.7 53.7 -59.7 -54.3 -40.4
-68.2
233.336 SBEL 7.7 7.5 8.8 6.2 4.8 4.8 5.2 (9.7 % .7 12.4 8.5 17.4
-.4
233.457 MECL 10.6 11.3 13.9 8.8 -45.8 -59.6 -19.3-100.0 26.9 32.2 65.7
-1.2
233.546 SBFU . 3 1.4 2.9 -.1 -2.8 -2.2 -.3 -4.1 -3.6 -3.3 . . 1
-6.7
233.676 MFCU 3.5 4.2 5.1 3.2 90.6 80.5 97.0 64.1 -59.6 -55.6 -47.1
-64.2
233.821 SBEU 6.9 7.4 8.2 6.5 7.0 5.6 8.4 2.9 % 9.9 % 8.9 13.7
4.0
233.948 MECU 10.0 11.1 12.9 9.2 -81.9 -64.1 -34.1 -94.1 52.4 36.3 61.6
10.9

```
```

234.115 SBFL 1.6 1.4 2.5 .4 4 -1.4 -2.1 -.7 -3.4 -2.8 - - . % 2 - -.9
-5.5

```

\section*{GI Example 3}

Tidal current parameters input file (all.tcp):
\begin{tabular}{rrrrrrrr}
1992 & 1 & 1 & 0 & 47 & MFC & 53.52 & 119.00 \\
1992 & 1 & 1 & 3 & 38 & SBE & 2.74 & 32.25 \\
1992 & 1 & 1 & 7 & 50 & MEC & 102.49 & 298.23 \\
1992 & 1 & 1 & 12 & 4 & SBF & 5.32 & 208.25 \\
1992 & 1 & 1 & 15 & 12 & MFC & 69.54 & 119.61 \\
1992 & 1 & 1 & 20 & 38 & SFC & 12.10 & 106.13 \\
1992 & 1 & 2 & 1 & 38 & MFC & 55.52 & 119.20 \\
1992 & 1 & 2 & 4 & 21 & SBE & 3.05 & 35.57 \\
1992 & 1 & 2 & 8 & 32 & MEC & 108.24 & 298.31 \\
1992 & 1 & 2 & 12 & 44 & SBF & 5.41 & 208.70
\end{tabular}

Interactive execution of the program. Gray shading indicates the input to be typed in by the user.
```

 If you: Enter
 already have a tidal current parameters file (*.tcp) (0)
 want to read a CDF data file (1)
 want to read an ASCII data file (time,spd,dir) (2)
 0
Enter the root for the *.tcp file
all

```

Greenwich intervals output file (all.gi):

```

etc.

| gtime $=$ | | | | | | | 365.7006 mtran $=$ | U iyear $=$ | 1992 |
| :---: | :---: | :---: | :---: | ---: | :---: | :---: | :---: | :---: | :---: |
| SBF | 516 | .25 | 2.84 | 208.80 | | | | | |
| MFC | 706 | 4.08 | 54.89 | 119.82 | | | | | |
| SBE | 517 | 7.38 | 3.03 | 26.36 | | | | | |
| MEC | 517 | 9.80 | 31.78 | 299.50 | | | | | |
| gtime $=$ | 366.2159 mtran $=$ | L iyear | 1992 | | | | | | |
| SBF | 517 | 1.03 | 1.45 | 208.35 | | | | | |
| MFC | 707 | 4.05 | 24.47 | 121.89 | | | | | |
| SBE | 518 | 6.37 | .76 | 22.93 | | | | | |
| MEC | 518 | 9.18 | 33.35 | 297.98 | | | | | |
| SBF | 518 | -.25 | 1.42 | 210.80 | | | | | |

| Greenwich | 95% Conf | Standard | Mean | Speed |
| :--- | :--- | :--- | :---: | :---: |\quad Mean

```
\begin{tabular}{lrrrrrrr} 
MFC & 4.23 & 4.16 & 4.30 & .97 & 62.93 & 1.223 & 120. \\
SBE & 6.92 & 6.84 & 7.01 & .99 & 2.77 & .054 & 29. \\
MEC & 10.19 & 10.14 & 10.24 & .61 & 74.68 & 1.452 & 299. \\
SBF & 1.29 & 1.21 & 1.37 & .96 & 3.31 & .064 & 208.
\end{tabular}

Greenwich intervals plotting file (all.plt):
```

 2.068 MFCL 4.0 4.7 7.5 1.9 48.5 51.9 69.9 34.0 -27.1 -29.1 -18.1
 -40.1
2.657 MFCU 5.7 5.0 6.7 3.2 65.1 55.2 69.4 41.0 -37.3 -31.2 -22.4
-39.9
3.098 MFCL 3.9 4.7 6.0 3.4 51.2 54.4 64.3 44.5 -28.9 -30.7 -24.6
-36.8
3.210 SBEL 6.6 6.7 7.1 6.4 1.7 1.7 2.1 llllllllll
2.0
3.381 MECL 10.7 10.9 11.3 10.5 -98.3 -94.6 -84.9-104.4 53.1 51.0 56.5
45.4
3.555 SBFU 2.4 2.7 3.2 2.1 -3.0 -2.7 -2.1 -3.3 -4.6 -4.7 -4.4
-4.9
3.680 MFCU 5.4 4.9 5.9 3.8 67.3 56.5 65.8 47.3 -38.8 -32.1 -26.3
-37.8
4.125 MFCL 3.7 4.7 5.6 3.8 53.6 56.1 63.7 48.6 -30.3 -31.8 -27.1
-36.5
4.237 SBEL 6.4 6.7 7.0 6.3 1.8 1.8 1.7 1.9 1.9 1.5 2.7 2.7 2.6 2.9
2.2
4.405 MECL 10.4 10.8 11.2 10.3 -99.8 -95.9 -89.3-102.5 53.8 51.7 55.4
47.9

```

\section*{GIPLOT Example 1}
```

 To make a *.pgl plot type 1, otherwise type 0
 1
GI Plot File?
all.plt
Plot Greenwich Intervals (1) or Velocity (2)?
1
Plot G. I. to contrast upper and lower moon transits (y for yes)?
n
Input last two digits of year
92
Range of time is 2.068 to 366.722
Range of Y is -1.55 to 11.67
For time axis, input TMIN,TSTEP,TMAX
1 7 50
For Y axis, input YMIN,YSTEP,YMAX
-2 1 12.5
Plot title ---
C-2 predicted Greenwich intervals

```

Sample plot of Greenwich intervals (12.42 hour range):

C-2 predicted Greenwich intervals


1992

\section*{GIPLOT Example 2}
```

 To make a *.pgl plot type 1, otherwise type 0
 1
GI Plot File?
all.plt
Plot Greenwich Intervals (1) or Velocity (2)?
1
Plot G. I. to contrast upper and lower moon transits (y for yes)?
Y
Input last two digits of year
92
Range of time is 2.068 to 366.722
Range of Y is -1.55 to 23.67
For time axis, input TMIN,TSTEP,TMAX
1 7 50
For Y axis, input YMIN,YSTEP,YMAX
-2 2 25
Plot title ---
C-2 predicted Greenwich intervals

```

Sample plot of Greenwich intervals (24.84 hour range):

C-2 predicted Greenwich intervals


1992

\section*{GIPLOT Example 3}
```

 To make a *.pgl plot type 1, otherwise type 0
 1
GI Plot File?
all.plt
Plot Greenwich Intervals (1) or Velocity (2)?
2
Plot velocity along which axis (clockwise from N)?
118
Input last two digits of year
92
Range of time is 2.068 to 366.722
Range of Y is -146.03 to 102.801
For time axis, input TMIN,TSTEP,TMAX
1 7 50
For Y axis, input YMIN,YSTEP,YMAX
-150 25 150
Plot title ---
C-2 predicted velocity maxima and minima

```

\section*{Sample plot of velocities:}
\(C-2\) predicted velocity maxima and minima


1992

\section*{6. REVRED: THE REVERSING REDUCTION PROGRAM}

\subsection*{6.1. Introduction}

Time differences and speed ratios are provided in Table 2 of the Tidal Current Tables to relate tidal currents at a reference station to tidal currents at a subordinate station. The reversing reduction program revred calculates the time differences and speed ratios between tidal currents at two stations or between tidal predictions and observed data at the same station. Current data can be analyzed vectorially or can be projected along a chosen flood direction for scalar analysis.

First, the predicted currents at the reference station must be calculated from the major axis tidal constituents by the program ncp2 and output in standard max \(/ \mathrm{min} /\) slacks format. Then, revred calculates the time differences for slack before flood (SBF), maximum flood current (MFC), slack before ebb (SBE), and maximum ebb current (MEC). These values can then be used to obtain Greenwich intervals for the subordinate station if Greenwich intervals for the reference station are known. Speed ratios are also calculated for MFC and MEC.

The program also has the option of doing a tide-by-tide analysis of water level data. First, predicted water levels at the reference station must be calculated from tidal constituents by the program ntp4 and output in standard max/mins format. Then, revred calculates the time differences for high water and low water. These values can then be used to obtain Greenwich intervals for the subordinate station if Greenwich intervals for the reference station are known. Height ratios or height differences are also calculated.

\subsection*{6.2. Input Parameters and Program Algorithm}

Revred can be run as an interactive program or with a control file. The first parameters requested by revred are NJOBS, ITYAN, XMXDIF, ITIDE, and IYRC.

NJOBS indicates the number of reversing reduction analyses to be done. All subsequent input lines are repeated for each analysis.

ITYAN is an index for the type of analysis to be done.
If ITYAN=1, subordinate station data is read in and smoothed. Max/min/(slacks) are picked and matched with predicted \(\mathrm{max} / \mathrm{min} /(\) slacks ) at the reference station. Time differences and speed ratios (or height ratios or height differences) are calculated.

If ITYAN=2, data is read in and smoothed. Max/min/(slacks) are picked and then the program stops.

If ITYAN=3, a max \(/ \mathrm{min} /(\) slacks \()\) file from a subordinate station is read in and matched with predicted max \(/ \mathrm{min} /(\) slacks ) at the
reference station. Time differences and speed ratios (or height ratios or height differences) are calculated.

XMXDIF is the maximum allowable time difference between corresponding phases at the two stations (defaults to 6.21 hours when XMXDIF \(=0.0\) ).

ITIDE is an index for the option of analyzing current or water level stations.
ITIDE=-1 for tidal currents ( \(\mathrm{max} / \mathrm{min} / \mathrm{slacks}\) ) with data analyzed vectorially. Slacks are minimum currents. Speed ratios are obtained.

ITIDE \(=0\) for tidal currents ( \(\mathrm{max} / \mathrm{min} / \mathrm{slacks}\) ) with data projected along the principal current direction (flood). Slacks are zero crossings. Speed ratios are obtained.

ITIDE \(=1\) for tides \((\max / \mathrm{min})\) relative to chart datums. Height differences are obtained.

ITIDE \(=2\) for tides ( \(\mathrm{max} / \mathrm{min}\) ) relative to mean sea level. Height differences are obtained.

ITIDE \(=3\) for tides ( \(\mathrm{max} / \mathrm{min}\) ) relative to chart datums. Height ratios relative to mean sea level are obtained.

ITIDE \(=4\) for tides \((\mathrm{max} / \mathrm{min})\) relative to mean sea level. Height ratios relative to mean sea level are obtained.

ITIDE \(=5\) for tides ( \(\mathrm{max} / \mathrm{min}\) ) relative to chart datums. Height ratios relative to chart datum are obtained.

ITIDE \(=6\) for tides \((\mathrm{max} / \mathrm{min})\) relative to mean sea level. Height ratios relative to chart datum are obtained.

IYRC is the year of the analysis (format i4). Only one year can be analyzed at a time.

Next, revred asks for headers identifying the reference and subordinate stations followed by the name of the \(\mathrm{max} / \mathrm{min} /(\) slacks) file for the reference station (unless ITYAN=2). Then, revred asks for the name of the \(\mathrm{max} / \mathrm{min} /\) (slacks) file for the subordinate station. If ITYAN=1 or ITYAN \(=2\), provide an output file name; if ITYAN=3, provide the input file name.

If ITYAN=1 or ITYAN=2, the subroutine maxmin is entered. (If ITYAN=3, the program skips ahead to the subroutine difrat.) Maxmin finds the max \(/ \mathrm{min} /(\) slacks) from a time series and
saves the results in a standard format and in a long format in a file with the extension *.lst. The parameters required are ITYIN, NSKIP, NOBS, SPH, FLDIR, and TMCHR.

ITYIN is an index for choosing the type of the subordinate station input data file. Results will be in knots or in feet.

ITYIN=-1 for ASCII free format vector data (time, speed, and direction) in knots.

ITYIN=0 for ASCII free format vector data (time, speed, and direction) in \(\mathrm{cm} / \mathrm{s}\).

ITYIN=1 for vector data in CDF format ( \(\mathrm{cm} / \mathrm{s}\) ).
ITYIN \(=2\) for vector data in 24 f 3.0 format (hourly and \(\mathrm{cm} / \mathrm{s}\) ).
ITYIN \(=3\) for one component of current data (along FLDIR) or tide data in \(12 \mathrm{f5} 5.2\) format (hourly and knots or feet).

ITYIN=4 for ASCII free format scalar data (time and water level).
NSKIP is the number of data points to skip at the beginning.
NOBS is the number of data points to use in the analysis (Enter 0 for all points except first NSKIP).

SPH is the number of data points per hour.
FLDIR is the principal current direction (flood) for the subordinate station data (when ITIDE \(=-1\) or 0 ) and is the component of the current to analyze when ITIDE \(=0\). Not relevant for water level analysis (ITIDE \(>0\) ) but must be given.

TMCHR is the time meridian correction in hours to subtract from the data if it is not in the same time as the reference station max \(/ \mathrm{min} /(\) slacks). (ncp2 and ntp4 output is usually in local time if the constituents were modified local epochs \(6^{\prime}\).) For example, if the subordinate station data is in GMT, TMCHR is 5 for EST, 6 for CST, or 8 for PST to shift to the local time zone.

Then, maxmin asks for the name of the subordinate station data file, reads in the data, and smooths it with a running average filter. The program asks for the window length in hours and checks that it is at least 5 data points long (required by the algorithm). If 0.0 is input as the window length, it defaults to 6.21 hours (half a semidiurnal period). When the slope of the smoothed time series changes sign, a 3-point parabolic fit is used to find the time and speed of MFC or MEC or the time and height of HW or LW. When ITIDE \(=-1\), the minumum current times are the SBF or SBE time. When ITIDE \(=0\) and the smoothed time series crosses zero, the
crossing time is the SBF or SBE time. Warnings are printed when there are more than 5 max/mins on any one day. If there are many warnings, consider using a longer window length. If the warnings cannot be eliminated, the max \(/ \mathrm{min} /\) (slacks) file for the subordinate station must be edited by the user so that there is only one line per day (i.e. a total of five floods and ebbs). Then revred is run again with ITYAN=3.

The subroutine difrat reads the \(\mathrm{max} / \mathrm{min} /(\) slacks) at the reference and subordinate stations, matches \(\mathrm{max} / \mathrm{min} /\) (slacks) at the reference and subordinate stations which are within XMXDIF hours, and calculates time differences, speed ratios (or height ratios or height differences), and statistics which are printed in an output file. If ITIDE \(=-1\) or 0 , any flood or ebb speed less than 0.25 knots is considered to be a "weak and variable current" as labeled in the Tidal Current Tables and is not included in the statistical summations. If ITIDE \(\$ 1\) (i.e. the stations are tide stations), the program asks for the datum of each station.

The program also asks for the Greenwich intervals at the reference station and, if ITIDE \(=-1\) or ITIDE \(=0\), the mean maximum flood and mean maximum ebb speeds at the reference station. If ITIDE \(>0\), the program asks for the mean tidal range at the reference station. If these values are given, the Greenwich intervals are calculated at the subordinate station and a correction factor for the mean flood and ebb currents or the mean high and low waters at the subordinate station is obtained. The correction factor accounts for any difference between the mean range at the reference station during the analysis period and the "long term" mean range at the reference station (obtained by some other method such as the program gi). If the values are unknown for the reference station, zeros should be entered. Then, Greenwich intervals and/or the correction factor will not be calculated for the subordinate station.

The output files have extensions *.tbl and *.plt (and *.lst if ITYAN=1 or ITYAN=2). The output files have lines that are 132 characters long. (The Unix command lp -oc can be used to print text in small letters.) The *.tbl file tabulates the daily time differences and speed ratios (or height ratios or height differences) and the output statistics. The *.plt file plots out the time differences and speed ratios (or height ratios or height differences).

\section*{REVRED Example 1 (ITIDE = -1)}

Input predictions file for the reference station, created by ncp2 (02pred):
\begin{tabular}{llllrrrrrrrrr}
0 & 0 & 1 & 1909999 & 101 & 1.0 & 356 & 740 & -1.911261454 & 1.418322023 & -0.522389999 & 99.9 & 1 \\
0 & 0 & 2 & 1909999 & 212 & 0.8 & 456 & 823 & -1.511551531 & 1.318532118 & -0.899999999 & 99.9 & 2 \\
0 & 0 & 3 & 190 & 28 & 338 & 0.7 & 612 & 912 & -1.012191607 & 1.219212226 & -1.199999999 & 99.9 \\
0 & 0 & 4 & 190 & 219 & 512 & 0.7 & 8031013 & -0.412331647 & 1.219562335 & -1.599999999 & 99.9 & 4 \\
0 & 0 & 5 & 190 & 352 & 646 & 0.999991136 & 0.099991734 & 1.120399999 & 99.999999999 & 99.9 & 5 \\
0 & 0 & 6 & 1909999 & 43 & -1.8 & 506 & 820 & 1.299991312 & 0.399991833 & 1.121319999 & 99.9 & 6 \\
0 & 0 & 7 & 1909999 & 143 & -2.2 & 609 & 929 & 1.599991435 & 0.499991936 & 1.122269999 & 99.9 & 7 \\
0 & 0 & 8 & 1909999 & 243 & -2.5 & 7041018 & 1.799991540 & 0.499992036 & 1.223219999 & 99.9 & 8 \\
0 & 0 & 9 & 1909999 & 336 & -2.7 & 7531103 & 1.999991632 & 0.399992131 & 1.399999999 & 99.9 & 9
\end{tabular}

Input data file for the subordinate station (c2.sd):
\begin{tabular}{lll}
156.60434 & 40.171 & 21.720 \\
156.61128 & 40.717 & 26.255 \\
156.61823 & 39.706 & 27.636 \\
156.62517 & 41.118 & 25.381 \\
156.63213 & 38.247 & 21.111 \\
156.63907 & 30.213 & 23.525 \\
156.64601 & 32.717 & 25.624 \\
156.65295 & 37.518 & 27.512 \\
156.65990 & 36.185 & 26.634 \\
156.66684 & 33.132 & 23.836
\end{tabular}

Interactive execution of the program. Gray shading indicates the input to be typed in by the user. In this case, subordinate station current data is analyzed vectorially (ITIDE=-1).
```

 Enter njobs,ityan,xmxdif,itide,iyrc
 1 1 0 -1 1990
Header for Reference Station
C-2 Inner Egmont Channel
Header for Subordinate Station
C-5 Old Port Tampa
Input file with Max/Min/(Slacks) for Reference Station
02pred
Output file with Max/Min/(Slacks) for Subordinate Station
c5obs
Enter ityin,nskip,nobs,sph,fldir,tmchr
0 0 0 6 28 5
Input ASCII data file in free format (Time Speed Dir)
c5.sd
Enter Smoothing Window Length in hours (0 defaults to 6.21 hours)
Possible Range is .8333333 TO 10.83333 hours
0
Smoothing Window is }37\mathrm{ data points long
Enter Reference Station Greenwich Intervals for SBF,MFC,SBE,MEC , IHM
IHM=0 for decimal hours or IHM=1 for HH.MM (All zeros if unknown)
1.28 4.25 7.19 10.20 0
Input Mean Max Flood and Mean Max Ebb in knots for Reference Station
(Both zeros if unknown)
1.306 1.339

```

Alternatively, the program revred can also be run with the following control file (revred.ctl).
```

1 1 0 -1 1990 ! Enter njobs,ityan,xmxdif,itide,iyrc
C-2 Inner Egmont Channel
C-5 Old Port Tampa
02pred ! Reference Station Max/Min/(Slacks)
c5obs ! Subordinate Station Max/Min/(Slacks)
0 0 6 28 5 ! Enter ityin,nskip,nobs,sph,fldir,tmchr
c5.sd ! Subordinate Station Data File
0 ! Smoothing Window Length (0 = 6.21 hrs)
1.28 4.25 7.19 10.20 0 ! Ref. Station Greenwich Ints \& hr frmt
1.306 1.339 ! Ref. Station MFC and MEC

```

Output max \(/ \mathrm{min} / \mathrm{slacks}\) file for the subordinate station (c5obs). There are two lines per day. The first line gives times and speeds; the second line gives directions.


Output *.lst file for the subordinate station (c5obs.lst):
\begin{tabular}{|c|c|c|c|c|c|}
\hline Minimum at: & 6/ 5/1990 & 16.70 hours, Value = & -1.124 & Dir \(=204\) & \\
\hline S.B.Max at: & 6/ 5/1990 & 21.04 hours, Value = & . 000 & Dir \(=0\) & \\
\hline Maximum at: & 6/ 6/1990 & . 38 hours, Value = & . 882 & Dir = 21 & \\
\hline S.B.Min at: & 6/ 6/1990 & 4.34 hours, Value & . 000 & Dir \(=0\) & \\
\hline Minimum at: & 6/ 6/1990 & 5.41 hours, Value = & -. 480 & Dir = 211 & \\
\hline S.B.Max at: & 6/ 6/1990 & 6.56 hours, Value & . 000 & Dir \(=0\) & \\
\hline Maximum at: & 6/ 6/1990 & 10.43 hours, Value & . 848 & Dir \(=24\) & \\
\hline S.B.Min at: & 6/ 6/1990 & 12.78 hours, Value = & . 000 & Dir \(=0\) & \\
\hline Minimum at: & 6/ 6/1990 & 16.99 hours, Value = & -1.288 & Dir = 204 & \\
\hline S.B.Max at: & 6/ 6/1990 & 21.78 hours, Value = & . 000 & Dir \(=0\) & \\
\hline Maximum at: & 6/ 7/1990 & 1.30 hours, Value \(=\) & . 738 & Dir \(=21\) & \\
\hline Minimum at: & 6/ 7/1990 & 5.80 hours, Value = & . 017 & Dir \(=287\) & Double Flood \\
\hline Maximum at: & 6/ 7/1990 & 10.84 hours, Value = & . 857 & Dir \(=23\) & \\
\hline S.B.Min at: & 6/ 7/1990 & 13.34 hours, Value & . 000 & Dir \(=0\) & \\
\hline Minimum at: & 6/ 7/1990 & 18.17 hours, Value = & -1.116 & Dir \(=204\) & \\
\hline S.B.Max at: & 6/ 7/1990 & 22.69 hours, Value = & . 000 & Dir \(=0\) & \\
\hline Maximum at: & 6/ 8/1990 & 1.92 hours, Value = & 1.015 & Dir \(=21\) & \\
\hline Minimum at: & 6/ 8/1990 & 6.79 hours, Value \(=\) & . 143 & Dir \(=14\) & Double Flood \\
\hline Maximum at: & 6/ 8/1990 & 11.31 hours, Value = & . 821 & Dir = 24 & \\
\hline S.B.Min at: & 6/ 8/1990 & 13.79 hours, Value & . 000 & Dir \(=0\) & \\
\hline
\end{tabular}

Note that a double flood is labeled when the ebb was "weak and variable" (less than 0.25 knots). S.B.Min and S.B.Max were not picked before and after the Minimum.

\section*{REVRED Example 2 (ITIDE = 0)}

Input predictions file for the reference station, created by ncp2 (02pred):
\begin{tabular}{lrrrrrrrrrrr}
0 & 0 & 1 & 1909999 & 101 & 1.0 & 356 & 740 & -1.911261454 & 1.418322023 & -0.522389999 & 99.9 \\
0 & 0 & 2 & 1909999 & 212 & 0.8 & 456 & 823 & -1.511551531 & 1.318532118 & -0.899999999 & 99.9 \\
0 & 0 & 3 & 190 & 28 & 338 & 0.7 & 612 & 912 & -1.012191607 & 1.219212226 & -1.199999999 \\
99.9 & 3 \\
0 & 0 & 4 & 190 & 219 & 512 & 0.7 & 8031013 & -0.412331647 & 1.219562335 & -1.599999999 & 99.9 \\
0 & 0 & 5 & 190 & 352 & 646 & 0.999991136 & 0.099991734 & 1.120399999 & 99.999999999 & 99.9 & 5 \\
0 & 0 & 6 & 1909999 & 43 & -1.8 & 506 & 820 & 1.299991312 & 0.399991833 & 1.121319999 & 99.9 \\
0 & 0 & 7 & 1909999 & 143 & -2.2 & 609 & 929 & 1.599991435 & 0.499991936 & 1.122269999 & 99.9 \\
0 & 0 & 8 & 1909999 & 243 & -2.5 & 7041018 & 1.799991540 & 0.499992036 & 1.223219999 & 99.9 & 8 \\
0 & 0 & 9 & 1909999 & 336 & -2.7 & 7531103 & 1.999991632 & 0.399992131 & 1.399999999 & 99.9 & 9
\end{tabular}

Interactive execution of the program. Gray shading indicates the input to be typed in by the user. In this case, one component (along 28/) of the subordinate station current data is analyzed (ITIDE=0).
```

 Enter njobs,ityan,xmxdif,itide,iyrc
 1 1 0 0 1990
Header for Reference Station
C-2 Inner Egmont Channel
Header for Subordinate Station
C-5 Old Port Tampa
Input file with Max/Min/(Slacks) for Reference Station
02pred
Output file with Max/Min/(Slacks) for Subordinate Station
05obs
Enter ityin,nskip,nobs,sph,fldir,tmchr
1 10 8121 6 28 5
Input CDF file
/dir6/cdf/PROJTAMPAB/t05010/file6
Enter Smoothing Window Length in hours (0 defaults to 6.21 hours)
Possible Range is .8333333 TO 10.83333 hours
0
Smoothing Window is }37\mathrm{ data points long
Enter Reference Station Greenwich Intervals for SBF,MFC,SBE,MEC , IHM
IHM=0 for decimal hours or IHM=1 for HH.MM (All zeros if unknown)
1.28 4.25 7.19 10.20 0
Input Mean Max Flood and Mean Max Ebb in knots for Reference Station
(Both zeros if unknown)
1.306 1.339

```

Alternatively, the program revred can also be run with the following control file (revred1.ctl).
```

1 1 0 0 1990 ! Enter njobs,ityan,xmxdif,itide,iyrc
C-2 Inner Egmont Channel
C-5 Old Port Tampa
02pred ! Reference Station Max/Min/(Slacks)
05obs ! Subordinate Station Max/Min/(Slacks)
1 10 8121 6 28 5 ! Enter ityin,nskip,nobs,sph,fldir,tmchr
/dir6/cdf/PROJTAMPAB/t05010/file6 ! Subordinate Station Data File
0 ! Smoothing Window Length (0 = 6.21 hrs)
1.28 4.25 7.19 10.20 0 ! Ref. Station Greenwich Ints \& hr frmt
1.306 1.339 ! Ref. Station MFC and MEC

```

Output max \(/ \mathrm{min} / \mathrm{slacks}\) file for the subordinate station (05obs):
```

5 690999991637 -1.120589999 99.9999999999 99.999999999 99.999999999 99.9 1
6 6909999 18 0.9 414 520 -0.5 6311021 0.812411654 -1.321419999 99.9 2
7 6909999 113 0.7 533 544 -0.6 5571046 0.913161805 -1.122379999 99.9 3
86909999 150 1.09999 643 -0.199991114 0.813421836 -1.123049999 99.9 4
96909999 208 1.0 559 633-0.5 7061138 1.014231904 -1.223369999 99.9 5
10 6909999 249 1.09999 718 -0.499991216 1.014521944 -1.399999999 99.9 6
11 690 9 318 1.0 712 754 -0.5 8401257 1.015382015 -1.399999999 99.9 7
12 690 38 345 1.0 735 847 -0.410101358 1.016322059 -1.2999999999 99.9 8
13 690 126 459 0.99999 933 -0.199991401 0.816522150-1.299999999 99.9 9
14 690 211 532 0.9 9201107 -0.613061609 0.818242232 -1.199999999999.9 10

```

Output *.lst file for the subordinate station (05obs.lst):


Note that a double flood is labeled when the ebb was "weak and variable" (less than 0.25 knots). S.B.Min and S.B.Max were not picked before and after the Minimum.

\section*{REVRED Example 3 (ITIDE \$ 1)}

Input predictions file for the reference station, created by ntp4 (chpred):
\begin{tabular}{rrrrrrrrrrrrrrr}
90 & 0 & 1 & 190 & 102 & 4.4 & 820 & 1.6 & 1458 & 3.8 & 2020 & 2.6 & 9999 & 99.9 & 1 \\
90 & 0 & 2 & 190 & 159 & 4.1 & 855 & 1.9 & 1532 & 3.9 & 2126 & 2.4 & 9999 & 99.9 & 2 \\
90 & 0 & 3 & 190 & 312 & 3.7 & 927 & 2.2 & 1605 & 4.1 & 2248 & 2.2 & 9999 & 99.9 & 3 \\
90 & 0 & 4 & 190 & 439 & 3.4 & 1003 & 2.6 & 1647 & 4.2 & 9999 & 99.9 & 9999 & 99.9 & 4 \\
91 & 0 & 5 & 190 & 18 & 1.9 & 635 & 3.2 & 1051 & 2.9 & 1737 & 4.4 & 9999 & 99.9 & 4 \\
91 & 0 & 6 & 190 & 134 & 1.6 & 901 & 3.2 & 1207 & 3.1 & 1837 & 4.5 & 9999 & 99.9 & 6 \\
91 & 0 & 7 & 190 & 243 & 1.3 & 1030 & 3.4 & 1331 & 3.2 & 1943 & 4.6 & 9999 & 99.9 & 6 \\
91 & 0 & 8 & 190 & 341 & 1.0 & 1115 & 3.5 & 1443 & 3.2 & 2048 & 4.8 & 9999 & 99.9 & 7 \\
91 & 0 & 9 & 190 & 431 & .8 & 1154 & 3.5 & 1539 & 3.1 & 2140 & 4.9 & 9999 & 99.9 & 8 \\
91 & 0 & 10 & 190 & 516 & .8 & 1221 & 3.5 & 1627 & 3.0 & 2229 & 4.9 & 9999 & 99.9 & 9 \\
9
\end{tabular}

Input data file for the subordinate station \((s p)\) :
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 87265201990 & 1 & 11075W & 497 & 533 & 562 & 581 & 577 & 553 & 522 & 479 & 436 & 393 & 354 \\
\hline 87265201990 & 1 & 12075W & 310 & 325 & 349 & 360 & 370 & 379 & 364 & 353 & 339 & 317 & 299 \\
\hline 291 & & & & & & & & & & & & & \\
\hline 87265201990 & 1 & 21075W & 293 & 306 & 323 & 341 & 359 & 365 & 361 & 339 & 310 & 281 & 253 \\
\hline 235 & & & & & & & & & & & & & \\
\hline 87265201990 & 1 & 22075W & 247 & 275 & 304 & 344 & 384 & 414 & 434 & 437 & 419 & 393 & 369 \\
\hline 345 & & & & & & & & & & & & & \\
\hline 87265201990 & 1 & 31075W & 334 & 347 & 364 & 385 & 409 & 429 & 437 & 430 & 415 & 386 & 350 \\
\hline 323 & & & & & & & & & & & & & \\
\hline 87265201990 & 1 & 32075W & 306 & 319 & 343 & 373 & 411 & 444 & 465 & 475 & 465 & 441 & 412 \\
\hline 382 & & & & & & & & & & & & & \\
\hline 87265201990 & 1 & 41075W & 356 & 343 & 347 & 365 & 384 & 410 & 434 & 447 & 447 & 436 & 418 \\
\hline 397 & & & & & & & & & & & & & \\
\hline 87265201990 & 1 & 42075W & 380 & 375 & 389 & 413 & 446 & 477 & 502 & 519 & 513 & 493 & 464 \\
\hline 428 & & & & & & & & & & & & & \\
\hline 87265201990 & 1 & 51075W & 387 & 351 & 325 & 310 & 313 & 333 & 352 & 373 & 397 & 408 & 409 \\
\hline 407 & & & & & & & & & & & & & \\
\hline 87265201990 & 1 & 52075W & 402 & 398 & 397 & 415 & 438 & 464 & 493 & 520 & 527 & 521 & 500 \\
\hline 468 & & & & & & & & & & & & & \\
\hline
\end{tabular}

Interactive execution of the program. Gray shading indicates the input to be typed in by the user. In this case, subordinate station water level data is analyzed (ITIDE\$1).
```

 Enter njobs,ityan,xmxdif,itide,iyrc
 1 1 0 1 1990
Header for Reference Station
E-724 Clearwater Beach
Header for Subordinate Station
E-520 St. Petersburg
Input file with Max/Min/(Slacks) for Reference Station
cbpred
Output file with Max/Min/(Slacks) for Subordinate Station
spobs
Enter ityin,nskip,nobs,sph,fldir,tmchr
3 0 2400 1 0 0
Input data file in tide format
sp
Enter Smoothing Window Length in hours (0 defaults to 6.21 hours)
Possible Range is 5.0 TO 65.0 hours
0
Smoothing Window is 5 data points long

```
```

 Input Datum(reference), Datum(subordinate)
 3.363 4.512
Enter Reference Station Greenwich Intervals for HW,LW and IHM
IHM=0 for decimal hours or IHM=1 for HH.MM (All zeros if unknown)
4.246 10.527 0
Input Mean Tidal Range for Reference Station (Zero if unknown)
1.8

```

Alternatively, the program revred can also be run with the following control file (revredwl.ct).
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline 11 & 01 & \multicolumn{3}{|c|}{1990} & \multicolumn{2}{|l|}{! Enter njobs, ityan, xmxdif,itide, iyrc} \\
\hline E-724 & \multicolumn{4}{|l|}{Clearwater Beach} & & \\
\hline E-520 & \multicolumn{4}{|l|}{St Petersburg} & & \\
\hline cbpred & & & & & ! & Reference Station Max/Min/(Slacks) \\
\hline spobs & & & & & ! & Subordinate Station Max/Min/(Slacks) \\
\hline 30 & 2400 & 1 & 0 & 0 & ! & Enter ityin, nskip, nobs, sph, fldir,tmchr \\
\hline sp & & & & & ! & Subordinate Station Data File \\
\hline 0 & & & & & ! & Smoothing Window Length (0 = 6.21 hrs) \\
\hline 3.363 & 4.512 & & & & ! & Datum (Reference), Datum (Subordinate) \\
\hline 4.246 & 10.527 & & & & ! & Ref. Station Greenwich Ints \& hr frmt \\
\hline 1.8 & & & & & ! & Ref. Station Mean Tidal Range \\
\hline
\end{tabular}

Output max/mins file for the subordinate station (spobs):
\begin{tabular}{rrrrrrrrrrrrr}
1 & 190 & 320 & 5.8 & 1223 & 3.2 & 1640 & 3.7 & 2321 & 2.9 & 9999 & 99.9 & 1 \\
2 & 190 & 450 & 3.7 & 1106 & 2.4 & 1840 & 4.3 & 9999 & 99.9 & 9999 & 99.9 & 2 \\
3 & 190 & 9 & 3.4 & 604 & 4.4 & 1209 & 3.1 & 1859 & 4.7 & 9999 & 99.9 & 3 \\
4 & 190 & 128 & 3.4 & 741 & 4.5 & 1236 & 3.8 & 1917 & 5.2 & 9999 & 99.9 & 4 \\
5 & 190 & 329 & 3.1 & 1035 & 4.1 & 1209 & 4.0 & 2005 & 5.3 & 9999 & 99.9 & 5 \\
6 & 190 & 433 & 3.0 & 2045 & 5.3 & 9999 & 99.9 & 9999 & 99.9 & 9999 & 99.9 & 6 \\
7 & 190 & 534 & 2.7 & 2139 & 5.7 & 9999 & 99.9 & 9999 & 99.9 & 9999 & 99.9 & 7 \\
8 & 190 & 657 & 2.8 & 2224 & 5.5 & 99999 & 99.9 & 9999 & 99.9 & 9999 & 99.9 & 8 \\
9 & 190 & 750 & 2.4 & 2345 & 5.6 & 99999 & 99.9 & 9999 & 99.9 & 9999 & 99.9 & 9 \\
10 & 190 & 835 & 2.5 & 9999 & 99.9 & 99999 & 99.9 & 9999 & 99.9 & 9999 & 99.9 & 10
\end{tabular}

Output *.lst file for the subordinate station (spobs.lst):


\section*{Sample *.tbl output file:}
REVERSING REDUCTION

Subordinate Station: C-5 Old Port Tampa
Reference Station: C-2 Inner Egmont Channel

etc.



\section*{Sample *.plt output file:}
```

REVERSING REDUCTION

```

Subordinate Station: C-5 Old Port Tampa
Reference Station: C-2 Inner Egmont Channel







\section*{7. ROTARY: THE ROTARY REDUCTION PROGRAM}

\subsection*{7.1. Introduction}

The rotary program relates tidal current vectors at a subordinate station to one component of the tidal current at a reference station. The data at the subordinate station are divided into periods corresponding to the reference station tidal cycles and sorted into time intervals after a designated phase (e.g. flood) at the reference station. The result is a series of mean current vectors showing the changing speeds and directions at the subordinate station during a complete tidal cycle.

The rotary program is dimensioned to analyze one year of data but all the data must be in the same year. The subordinate station data can be in the CDF file format or in a free format ASCII file (as decimal Julian day, speed, direction). The Julian day should be given to at least four decimal places to define the time to the nearest minute.

The reference station phase (SBF, MFC, SBE, or MEC) at the beginning of the tidal cycles must be chosen. To get accurate results for short time series, an integral number of tidal cycles should be used. This can be done by picking starting and ending dates and times from the reference station input file which is created by the program ncp2. If there is a significant diurnal inequality, an even number of tidal cycles should be analyzed, preferably starting and ending with the stronger flood or ebb.

\subsection*{7.2. Program Algorithm}

The subordinate station data can be sorted into time intervals in one of four different ways depending on the parameters IEV1 and IEV2.

If IEV1 is negative, an hourly rotary analysis is carried out in which the subordinate station data are placed in one of 13 different time periods from 0 to 12 hours after a specified tidal phase (e.g. flood) at the reference station. For tidal cycles longer than 13 hours, the data points after 13 hours are evenly divided between the last interval of one tidal cycle and the first interval of the next tidal cycle. This option works well only for semidiurnal or mainly semidiurnal tidal currents. (The results can be used in Table 5 of the Tidal Current Tables.)

If IEV1 is 0 , a half hourly rotary analysis is carried out in which the subordinate station data are placed in one of 26 different time periods from 0 to 12.5 hours after a specified tidal phase (e.g. flood) at the reference station. For tidal cycles longer than 13 hours, the data points after 13 hours are evenly divided between the last interval of one tidal cycle and the first interval of the next tidal cycle. This option works well only for semidiurnal or mainly semidiurnal tidal currents. (The results can be used in Table 5 of the Tidal Current Tables.)

If IEV1 is positive and IEV2 is 0 , every tidal cycle at the reference station is divided into IEV1 intervals and the subordinate station data are placed in the appropriate time interval. IEV1 must be an even number less than or equal to 26 . This option works for semidiurnal, mixed, or diurnal tidal currents.

If IEV1 is positive and IEV2 is positive, every tidal cycle at the reference station is divided into two half cycles (e.g. by SBF and SBE) which are in turn subdivided into IEV1 intervals and IEV2 intervals. The subordinate station data are placed in the appropriate time interval. IEV1 and IEV2 must both be even numbers whose total is less than or equal to 26 . This option works for semidiurnal, mixed, or diurnal tidal currents.

The mean current vector at the subordinate station is calculated for each time interval. The mean current vectors are averaged to obtain the mean nontidal current. Then, for the half hour interval analysis only (IEV1=0), because 12.5 hours is beyond the 12.42 -hour semidiurnal \(\mathrm{M}_{2}\) period, the data for 12.5 hours are combined with the data for 12 hours.

Next, an editing procedure is carried out to suppress the effects of noise on the results. IEDIT \(=0\) is for strong tidal currents and IEDIT \(=1\) is for weak tidal currents.

If the parameter IEDIT is set to 0 , the high signal-to-noise editing procedure is performed. The first step is to remove speed outliers greater than two standard deviations from the mean speeds for each interval. Then, direction outliers are removed in a 3-step process narrowing the range of acceptable directions from \(90^{\circ}\) to \(60^{\circ}\) to \(45^{\circ}\), recalculating the mean current vectors at each step. If less than \(80 \%\) of the original data in an interval remains after the direction-editing step, the mean current vector after the speed-editing step is retained and is printed with a question mark. For a rectilinear tidal current, mean current vectors near slack times are small and likely to be labeled questionable.

If IEDIT is set to 1 , the low signal-to-noise editing procedure is performed. Velocity outliers are removed vectorially in a 2 -step process in which outliers greater than (1) the magnitude or (2) half the magnitude of the mean current vectors (or \(25 \mathrm{~cm} / \mathrm{s}\) whichever is greater) are removed, recalculating the mean current vectors at each step.

After editing is completed, the mean nontidal current is recalculated and is subtracted from each mean current vector to give the tidal components (north and east) and the tidal current vector for each time interval. A velocity correction factor is calculated by dividing the average of the mean maximum flood and ebb speeds at the reference station by the average of all the flood and ebb speeds at the reference station during the analysis period. The velocity correction factor is applied to the subordinate station tidal current vectors and the mean nontidal current is added back to get the total current vectors. The speeds and directions of the total current are plotted out versus time interval and as a polar plot.

Next, the maximum and minimum current time intervals are determined. A range of intervals (up to 4 before and up to 4 after the maximum current) is chosen where the speeds are within 5 \(\mathrm{cm} / \mathrm{s}\) of the maximum current. If the number of intervals is greater than three and the speeds do
not uniformly decrease both before and after the maximum, the time of the maximum current is considered to be the midpoint of the range. Otherwise, a 3-point parabolic fit is applied to the maximum speed and the two adjacent speeds to more accurately obtain the time and the maximum speed. The direction of the maximum current is always obtained by taking the average of the maximum current direction with the two adjacent directions.

A secondary velocity maximum is found from the current vectors more than five intervals from the first and greater than \(90^{\circ}\) in direction from the first. The above process is repeated with the secondary maximum.

Next, the velocity minimum interval and the two intervals before and the two intervals after the minimum are considered. The minimum current vector is found by determining the shortest vector to one of the four line segments connecting the five points.

A secondary velocity minimum is found from the current vectors more than five intervals from the first. The above process is repeated for the secondary minimum.

A warning is printed if either minimum direction is closer than \(45^{\circ}\) to either maximum direction. Always check the choices for maximum and minimum currents on the speed and direction plots and on the polar plot to see if they make sense.

The program is run in a Unix environment as
\[
\text { rotary }<\text { rotary.ctl }>\text { rotout }
\]
where rotary.ctl is the control file and rotout is the output file. The output file rotout has to be formatted for printing by the Unix command asa as follows:
\[
\text { asa rotout }>\text { rotary.out }
\]

The file rotary.out has lines up to 132 characters long. The Unix command \(\mathbf{l p}\)-oc can be used to print text in small letters.

\subsection*{7.3. Explanation of the Control File}

The rotary control file is in the following format:
```

PPRED
JOBXXX IIN ITW2 NSPH ITYPE IEDIT IOUT NT
PPATH
IEV1 IEV2
JYR MBG IDBG TBG ITFMT
JYR MEND IDEND TEND ITFMT
TITEL
RTIM(1) RTIM(2) RTIM(3) RTIM(4) IHM IRTIM
REFVELF REFVELE

```

The numerical parameters are read in by rotary in free format.
Line \#1
PPRED Full pathname of input file containing reference station predictions created by the program ncp2. Times should be in local time. Speeds are in knots.

Line \#2
JOBXXX Number of jobs (lines 3 through 9 must be repeated for each job).
IIN \(=0 \quad\) For subordinate station input data in CDF format.
\(\mathrm{IIN}=1 \quad\) For subordinate station input data in ASCII format (decimal Julian day, speed, and direction).

ITW2 Number of hours to add to reference station times to adjust them to subordinate station times. For example, if reference times are for \(75^{\circ} \mathrm{W}\) and data are for \(0^{\circ}(\mathrm{GMT})\), then set ITW2 to 5 . ITW2 will represent the difference in time meridians divided by \(15^{\circ}\) (the number of degrees in one time meridian).

NSPH Number of samples per hour for subordinate station input data.

ITYPE \(=1\)
ITYPE \(=2\)
ITYPE \(=3\)
ITYPE= 4

IEDIT \(=0 \quad\) Use editing procedure for strong tidal currents (first edit velocities, then edit directions).
\begin{tabular}{ll} 
IEDIT \(=1\) & Use editing procedure for weak tidal currents (edit vectorially). \\
IOUT \(=0\) & Only the first and last subordinate station input data points are printed. \\
IOUT \(=1\) & \begin{tabular}{l} 
All the input data points are printed. \\
IOUT \(=2\)
\end{tabular} \\
\begin{tabular}{l} 
All the input data points will be printed with four additional terms \\
indicating which interval of which tidal cycle the data point is in.
\end{tabular} \\
\(\mathrm{NT}=0\) & \begin{tabular}{l} 
No approximate running mean flow. \\
\(\mathrm{NT}=1\)
\end{tabular} \\
\begin{tabular}{l} 
Gives approximate running mean flow (estimates nontidal current during \\
each tidal cycle).
\end{tabular}
\end{tabular}

\section*{Line \#3}

PPATH Full pathname of input file containing subordinate station observed data in CDF or ASCII format.

Line \#4
\begin{tabular}{ll} 
IEV1 \(<0\) & One reference time per tidal cycle and hourly intervals. \\
IEV1 \(=0\) & One reference time per tidal cycle and half hourly intervals. \\
IEV1 \(>0\) and IEV2 \(=0\) & \begin{tabular}{l} 
One reference time per cycle and a selected number of even \\
intervals \#26 (IEV1 = the number of intervals).
\end{tabular} \\
\(\mathrm{IEV} 1>0\) and IEV2 \(>0\) & \begin{tabular}{l} 
Two reference times per cycle (i.e. Slack before Flood and Slack \\
before Ebb) and an even number of intervals in each phase with
\end{tabular} \\
the total number of intervals less than or equal to 26 (IEV1 = the \\
number of intervals in the first phase, IEV2 = the number of \\
intervals in the second phase).
\end{tabular}

Line \#5
\begin{tabular}{ll} 
JYR & Year of the first data point to be analyzed (4 digits). \\
MBG & Month of the first data point to be analyzed. \\
IDBG & Calendar day of the first data point to be analyzed. \\
TBG & Time (local) of the first data point to be analyzed. \\
ITFMT \(\ldots 1\) & Time in decimal hours. \\
ITFMT \(=1\) & Time in hours and minutes (HH.MM).
\end{tabular}

To ensure that only complete tidal cycles will be included in the analysis, choose the beginning time (e. g. a flood time) from the file PPRED such that it is after the first data point in PPATH. PPRED times should be local while PPATH times may be local or GMT.
\begin{tabular}{ll} 
JYR & \begin{tabular}{l} 
Year of the last data point to be analyzed (4 digits). Must be same as the \\
starting year.
\end{tabular} \\
MEND & Month of the last data point to be analyzed. \\
IDEND & Calendar day of the last data point to be analyzed. \\
TEND & Time (local) of the last data point to be analyzed. \\
ITFMT \(\ldots 1\) & \begin{tabular}{l} 
Time in decimal hours.
\end{tabular} \\
ITFMT \(=1\) & Time in hours and minutes (HH.MM).
\end{tabular}

To ensure that only complete tidal cycles are included in the analysis, choose the end time (e. g. a flood time) from the file PPRED such that it is before the last data point in PPATH. PPRED times should be local while PPATH times may be local or GMT.

Line \#7
TITEL 80 character header for output file.
Line \#8 RTIM(1), RTIM(2), RTIM(3), RTIM(4), IHM, IRTIM
RTIM(1) Reference station Greenwich interval for slack before flood (SBF).
RTIM(2) Reference station Greenwich interval for flood (MFC).
RTIM(3) Reference station Greenwich interval for slack before ebb (SBE).
RTIM(4) Reference station Greenwich interval for ebb (MEC).
\(\mathrm{IHM}=0 \quad\) Time in decimal hours.
\(\mathrm{IHM}=1 \quad\) Time in hours and minutes (HH.MM).
IRTIM Number corresponding to requested phase at begining of the tidal cycles. Pick 1 for tidal cycles to start at SBF, 2 for tidal cycles to start at MFC, 3 for tidal cycles to start at SBE, or 4 for tidal cycles to start at MEC.

If reference station Greenwich intervals are unknown, enter zeros for RTIM. Greenwich intervals will not be calculated for the subordinate station. However, the phase at the beginning of the tidal cycles (IRTIM) must still be specified.

Line \#9

REFVELF The reference station mean maximum flood current (MFC).
REFVELE The reference station mean maximum ebb current (MEC).

Enter zeros if mean maximum flood and ebb currents are unknown. No correction factor will be applied.

\subsection*{7.4. Sample Input and Output Files}

Sample reference station predictions file created by the program ncp2 (c2pred92).
\begin{tabular}{rrrrrrrrrrrr}
0 & 0 & 1 & 1929999 & 251 & -2.0 & 7051012 & 1.499991534 & 0.299992039 & 1.123229999 & 99.9 & 1 \\
0 & 0 & 2 & 1929999 & 332 & -2.1 & 7451049 & 1.599991615 & 0.299992121 & 1.199999999 & 99.9 & 2 \\
0 & 0 & 3 & 192 & 3 & 409 & -2.2 & 8201124 & 1.599991646 & 0.199992201 & 1.299999999 & 99.9 \\
0 & 0 & 4 & 192 & 42 & 444 & -2.2 & 8531151 & 1.599991717 & 0.099992232 & 1.299999999 & 99.9 \\
0 & 0 & 5 & 192 & 120 & 516 & -2.2 & 9221225 & 1.599991745 & -0.199992307 & 1.299999999 & 99.9 \\
0 & 0 & 6 & 192 & 157 & 547 & -2.1 & 9501257 & 1.599991815 & -0.299992341 & 1.299999999 & 99.9 \\
0 & 0 & 7 & 192 & 234 & 620 & -2.010151332 & 1.417181847 & -0.320289999 & 99.999999999 & 99.9 & 7 \\
0 & 0 & 8 & 1929999 & 16 & 1.1 & 313 & 651 & -1.910391401 & 1.317351923 & -0.521239999 & 99.9 \\
0 & 0 & 9 & 1929999 & 59 & 0.9 & 355 & 726 & -1.611011430 & 1.217552000 & -0.622279999 & 99.9 \\
0 & 010 & 1929999 & 152 & 0.8 & 443 & 801 & -1.311211500 & 1.118182043 & -0.823499999 & 99.9 & 10
\end{tabular}

\section*{Sample control file (rotary.ctl).}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|l|}{c2pred92} & & Reference station predictions file \\
\hline 1 & 1 & 0 & 64 & 0 & 0 & 0 & & Subordinate station data parameters \\
\hline c1spdr & & & & & & & & Subordinate station data file \\
\hline -1 & & 0 & & & & & & Sorting parameters IEV1 and IEV2 \\
\hline 1992 & 11 & 30 & 16.17 & & 1 & & & First point for analysis \& hour format \\
\hline 1992 & 12 & 29 & 1.49 & & 1 & & & Last point for analysis \& hour format \\
\hline \multicolumn{9}{|l|}{Referenced to Maximum Flood Current at Inner Egmont Channel} \\
\hline \multicolumn{2}{|l|}{1.28} & 4.25 & 7.19 & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\[
10.20
\]}} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{0}} & Greenwich Ints, hr frmt, \& begin cycle \\
\hline \multicolumn{2}{|l|}{1.30} & \multicolumn{2}{|l|}{1.34} & & & & & Reference station MFC and MEC \\
\hline
\end{tabular}

\section*{Sample output file (rotary.out).}


\(\mathrm{F}+.008 .3696\)
\(F+1.006 .58137\)
\(F+3.008 .69204\)
\begin{tabular}{l}
\(+\quad 4.009 .48223\) \\
\(+\quad 5.00\) \\
\hline
\end{tabular}
\(\mathrm{F}+6.007 .48264\).
\(\mathrm{F}+8.005 .40 .345\)
\(F+9.00 \quad 6.16 \quad 18\).
\(F+11.00 \quad 8.4532\)
Velocity Correction Factor
\(1.32 / 1.37=.97\)
Tidal Current
Corrected Velocities

( * Indicates G.I. of first ref.time read in)
Velocity in \(\mathrm{cm} / \mathrm{sec}\)
Total Current


Maximum Observed Current
\begin{tabular}{rr} 
Vel & Dir \\
25.98 & 258
\end{tabular}

Nontidal Current


\section*{8. UTILITY PROGRAMS}

\subsection*{8.1. Calculation of the Principal Current Direction}

Before the harmonic analysis of current data can be carried out, the principal current direction must be determined. Tidal constituents can then be determined for components parallel and perpendicular to the principal current direction. Currents in restricted bodies of water such as bays and estuaries are generally rectilinear; the current is directed toward one of two opposite directions (flood and ebb), except during slack periods when the current is near zero. Such currents are also called reversing, although the flood and ebb directions for a reversing current do not have to be \(180^{\circ}\) apart.

In large bodies of water, strong currents can flow unrestricted in any direction and a polar plot may not show a clear directionality. Tidal currents in the oceans are generally rotary; that is, they rotate clockwise or counter-clockwise passing through two maxima and two minima in approximately opposite directions. It may be difficult to estimate the principal current direction with precision unless the major current axes of each of the tidal constituents are aligned with each other and the minor current axes are significantly smaller than the major current axes. Furthermore, when tidal currents are weak, nontidal currents can be as large as the tidal currents and can flow in any direction. If the nontidal currents tend to flow in different directions than the tidal current, the calculated principal current direction may be strongly affected by the nontidal current.

The east (u) and north (v) velocity components of a current make up a bivariate data set. The principal angle for a bivariate data set can be calculated as described by Preisendorfer (1988). Given the following variances and covariance calculated for the data
\[
\begin{gather*}
s_{u u}=\frac{1}{n-1} \sum_{i=1}^{n}\left[u_{i}-\bar{u}\right]^{2}  \tag{1}\\
s_{v v}=\frac{1}{n-1} \sum_{i=1}^{n}\left[v_{i}-\bar{v}\right]^{2}  \tag{2}\\
s_{u v}=\frac{1}{n-1} \sum_{i=1}^{n}\left[u_{i}-\bar{u}\right]\left[v_{i}-\bar{v}\right] \tag{3}
\end{gather*}
\]
where the mean currents are
\[
\begin{equation*}
\bar{u}=\frac{1}{n} \sum_{i=1}^{n} u_{i} \text { and } \bar{v}=\frac{1}{n} \sum_{i=1}^{n} v_{i}, \tag{4}
\end{equation*}
\]
the principal angle 2 (counter-clockwise from east) is obtained from
\[
\begin{equation*}
\tan 2 \theta=\frac{2 s_{u v}}{s_{u u}-s_{v v}} \tag{5}
\end{equation*}
\]

The correlation coefficient \(r_{u v}\), a measure of the directionality of the current, is
\[
\begin{equation*}
r_{u v}=\frac{s_{u v}}{s_{u u}^{1 / 2} s_{v v}^{1 / 2}} \tag{6}
\end{equation*}
\]

If a new set of basis vectors are set up parallel and perpendicular to the principal angle, the two principal variances are
\[
\begin{align*}
& s_{11}=\frac{1}{2}\left[\left(s_{u u}+s_{v v}\right)+\left[\left(s_{u u}-s_{v v}\right)^{2}+4 s_{u v}^{2}\right]^{\frac{1}{2}}\right]  \tag{7}\\
& s_{22}=\frac{1}{2}\left[\left(s_{u u}+s_{v v}\right)-\left[\left(s_{u u}-s_{v v}\right)^{2}+4 s_{u v}^{2}\right]^{\frac{1}{2}}\right] \tag{8}
\end{align*}
\]
and the principal covariance is
\[
\begin{equation*}
s_{12}=0 . \tag{9}
\end{equation*}
\]

The principal current direction program is called premp. The program is dimensioned for 120000 points which are read in from a free format ASCII file. The columns of the input file are either (time in decimal Julian days, speed, direction) or (time in decimal Julian days, \(u\) component, v component).

The program is run interactively as follows, with gray shading indicating user input:
```

Input filename --->
c2.sd
Is data (speed,direction) (1) or (u,v) (2) ?
1
Mean velocity --- Speed 4.7455 Direction 133.24
Correlation coefficient = -.955792
Principal current direction = 121.0393 degrees (true)
Major axis variance = 2751.4961 98.2492 %
Minor axis variance = 49.0328 1.7508%
Major axis standard deviation = 52.4547
Minor axis standard deviation = 7.0023

```

The output is also printed in a file named vel.lst as shown below.
```

Number of data points = 9500
U-compoment mean velocity \& 95% confidence interval 3.4572 2.5504 4.3640
V-component mean velocity \& 95% confidence interval -3.2508 -3.8080 -2.6936
Mean velocity --- Speed 4.7455 Direction 133.24
Correlation coefficient = -.955792
Principal current direction = 121.0393 degrees (true)
Major axis variance = 2751.4961 98.2492 %
Minor axis variance = 49.0328 1.7508 %
Major axis standard deviation = 52.4547
Minor axis standard deviation = 7.0023

```

The mean \(u\) and \(v\) velocities are printed with \(95 \%\) confidence intervals. If both of the confidence intervals include zero, a warning will be printed indicating that the mean current is not significantly different than zero. The principal current direction is in degrees clockwise from north. It may be either the flood or the ebb direction. If it is in the ebb direction, add or subtract \(180^{\circ}\) to give it the flood direction.

The correlation coefficient and the major and minor axis variances indicate the directionality of the current. If the minor axis variance is less than \(20 \%\), the current can be characterized as rectilinear. Harmonic analysis should be carried out parallel and perpendicular to the principal current direction. If the minor axis variance is greater than \(20 \%\), there are significant currents perpendicular to the principal current direction. The current may be rotary or it may be reversing with flood and ebb directions not close to \(180^{\circ}\) apart. Given the imprecision of the principal current direction, harmonic analysis should be done along \(0^{\circ}\) and \(90^{\circ}\) (north and east).

\subsection*{8.2. Finding Gaps in a Time Series}

To find all the gaps greater than a specified time period in a time series, run the program gap. The first column in the input file should be the time in decimal Julian days. The program is run interactively as follows, where gray shading indicates user input.
```

Input filename
c2.det
Enter year of first data point
1990
Search for gaps greater than ? (in hours)
. }2

```

The output is printed in a file named gaps as shown below. This output is useful for setting up the control file for a least squares harmonic analysis using lsqha.
```

Gaps in c2.det
First point 1990 231 8/19 13:30
points
points
362 12/28 2:30 to 2 1/ 2 13:13
points
64 3/ 5 11:13 to 71 3/12 18: 0
points
148 5/28 14:20 to 148 5/28 16:20 2.001 hour gap
points
Last point 1991 190 7/ 9 13:20

```
    9585 continuous
```

 9585 continuous
    ```
    9585 continuous
    62.501 hour gap
    62.501 hour gap
    62.501 hour gap
    840 continuous
    840 continuous
    840 continuous
130.717 hour gap
130.717 hour gap
130.717 hour gap
    8 9 1 7 ~ c o n t i n u o u s
    8 9 1 7 ~ c o n t i n u o u s
    8 9 1 7 ~ c o n t i n u o u s
174.782 hour gap
174.782 hour gap
174.782 hour gap
    11067 continuous
```

 11067 continuous
    ```
    11067 continuous
```

```
        6 0 3 1 ~ c o n t i n u o u s
```

```
        6 0 3 1 ~ c o n t i n u o u s
```

```
        6 0 3 1 ~ c o n t i n u o u s
```


8.3. Averaging Multiple Sets of Tidal Constituents

The Fourier harmonic analysis programs harm29 or harm15 may have been used to analyze several 29 or 15 day periods during a single or multiple deployments of an instrument. Multiple sets of tidal constituents can be vectorially averaged by using the program avcons.

The input file can consist of up to 30 sets of tidal constituents in standard predictions format. For a scalar variable such as water levels, each set has nine lines consisting of a two line header, a line containing the mean value and six lines containing amplitudes and phases of 37 tidal constituents. For a vector variable such as currents, each set consists of two such groups (the first for the major axis and the second for the minor axis). The following is an input file for tidal current constituents created by concatenating 12 sets of tidal current constituents.

```
ADCP STATION Inner Egmont AT 18 ABOVE BOT.
29-DAY H.A. BEGINNING 1- 3-91 AT HOUR .13
    -395
            1528203317183353464119383245339702454 2488 592300282519
                            436459
                                2 0 0 21023336 0 0 23163255 5212650 0
                312912388 3703386 0 0 21322486 23722421 0
                4 0
                5 7812585112442459 0 0 0 0 17073191 0
            64633152 0 0
ADCP STATION Inner Egmont AT 18 ABOVE BOT.
29-DAY H.A. BEGINNING 1- 3-91 AT HOUR .13
    -452
\begin{tabular}{rrrrrrrrrr}
1 & 6702425 & 8073024 & 359 & 335 & 15491239 & 257 & 902 & 15971608 & 3993314 \\
2 & 0 & 0 & 3152143 & 0 & 0 & 70133 & 2191372 & 0 & 0 \\
3 & 69 & 871 & 52703 & 0 & 0 & 1131424 & 1261057 & 0 & 0 \\
4 & 0 & 0 & 0 & 0 & 0 & 0 & 611766 & 3101791 & 483000 \\
5 & 421974 & 5131267 & 0 & 0 & 0 & 0 & 51 & 681 & 0 \\
5 & 0 & 2203078
\end{tabular}
ADCP STATION Inner Egmont AT 18 ABOVE BOT.
29-DAY H.A. BEGINNING 2- 2-91 AT HOUR .13
    -4
            1540613335214373439106643215373502452 1946 653303722474 7151506
            2 0 0 25083205 0 0 20693231 2041598 0 0 14183096
            13062430 3783383 0 0 21562463 23992441 0 0 0 0
            4 0}000000000011542483 58922485 12653435 1713443
            5 7902495123632454 0 0 0 0 0 15253161 0
            6 2012218 0 0
ADCP STATION Inner Egmont AT 18 ABOVE BOT.
29-DAY H.A. BEGINNING 2- 2-91 AT HOUR .13
    -233
\begin{tabular}{rrrrrrrrrr}
1 & 12863184 & 3432875 & 846 & 666 & 17891151 & 6251581 & 7581431 & 550 & 587 \\
2 & 0 & 0 & 1361392 & 0 & 0 & 164521 & 1832058 & 0 & 0 \\
3 & 33 & 872 & 93041 & 0 & 0 & 541291 & 601013 & 0 & 0 \\
4 & 0 & 0 & 0 & 0 & 0 & 0 & 291551 & 1471569 & 202887 \\
5 & 201708 & 5921172 & 0 & 0 & 0 & 0 & 121 & 611 & 0 \\
6 & 144 & 604 & 0 & 0 & & & & & 0 \\
6 & 932850
\end{tabular}
```

etc.

The program is run interactively as follows, where gray shading indicates user input.

```
    Enter the Input constituents file
c2cons
    Enter the averaged output constituents file
c2cons.avg
    type 1 for scalar constituents (water levels) or 2 for
    vector constituents (major axis and minor axis currents)
2
    Major axis (flood direction)?
118
```

The following is a sample output file for tidal current constituents.

```
Average of 12 sets of harmonic analysis constituents
Major axis component (along 118 degrees)
    1 8 0 3
                1535253359189063417102123287316512514 2480 176267482446 1172146
                2 0 0 10122748 0 0 19843297 991893 0
                3 11232585 3743384 0
                4 0
                5 6782378104852509 0
            6 2663049 0 0
Average of }12\mathrm{ sets of harmonic analysis constituents
Minor axis component (along 208 degrees)
    101
\begin{tabular}{rcrrcrrcrr}
1 & 25082640 & 9432652 & 4152418 & 16771249 & 4103216 & 13641104 & 4793204 \\
2 & 0 & 0 & 962871 & 0 & 0 & 902472 & 1641617 & 0 & 0 \\
3 & 441395 & 172654 & 0 & 0 & 1051178 & 1031317 & 0 & 0 & 0 \\
4 & 0 & 0 & 0 & 0 & 0 & 0 & 451029 & 2201014 & 572651 \\
5 & 22 & 891 & 5601240 & 0 & 0 & 0 & 0 & 592364 & 0 \\
6 & 1571800 & 0 & 0 & & & & 0 & 2442648 \\
\end{tabular}
```


8.4. NCP2: The Reversing Current Predictions Program

ncp2 predicts the timing and speed of tidal current phases using constituents along the major axis for Table 1 of the NOS Tidal Current Tables. The original program has been documented in greater detail by Pore and Cummings (1967). The program accesses an ASCII file which contains astronomical tidal parameters for each year from 1901 to 2025. To run ncp2 in a Unix environment:

> ncp2 - < inputfile

Sample inputfile:

```
C-2 INNER EGMONT CHANNEL 8/20/90 - 9/22/91
    35 1 3 1
\begin{tabular}{rrrrrrrrrr}
1 & 10373360 & 3673418 & 1983288 & 6142515 & 48173 & 5192446 & 22059 \\
2 & 0 & 0 & 202747 & 0 & 0 & 393299 & 21979 & 0 & 0 \\
3 & 222585 & 73384 & 0 & 0 & 372481 & 412549 & 0 & 0 & 0 \\
4 & 0 & 0 & 0 & 0 & 0 & 0 & 202417 & 1002413 & 223416 \\
5 & 132378 & 2032510 & 0 & 0 & 0 & 0 & 283234 & 0 & 0 \\
6 & 53064 & 1003423
\end{tabular}
1 9 9 4
    0 0 0
```

The first line gives station identifying information. The second line begins with the mean current (knots) in the format f6.3, followed by three parameters (format 3i2) set to 131 . The next six lines contain the constituents in standard predictions format (knots and kappa prime) obtained from a harmonic analysis program. The next line contains the year for which predictions are to be made (format i4). The next line is blank if the whole year is to be predicted. The last line is three zeros in the format 3i4. Output will be in a file named 13. Output times are in local time and velocities are in knots. Times of 9999 and velocities of 99.9 are used as filler. The program will indicate if there are any "trouble days". This occurs when there are more than five floods and ebbs in a day. The user must decide which phase(s) to edit out to reduce the number of floods and ebbs to five for that day.

Sample output file 13 :

| 0 | 0 | 1 | 1949999 | 34 | 1.1 | 330 | 713 | -2.110551421 | 1.617561948 | -0.622059999 | 99.9 | 1 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 0 | 0 | 2 | 1949999 | 139 | 1.0 | 424 | 748 | -1.811281459 | 1.518262041 | -0.823359999 | 99.9 | 2 |
| 0 | 0 | 3 | 1949999 | 254 | 0.8 | 529 | 837 | -1.312011544 | 1.419002139 | -1.099999999 | 99.9 | 3 |
| 0 | 0 | 4 | 194 | 121 | 419 | 0.7 | 652 | 934 | -0.812301629 | 1.319392255 | -1.299999999 | 99.9 |
| 0 | 0 | 5 | 194 | 302 | 548 | 0.8 | 8541048 | -0.312541720 | 1.220269999 | 99.999999999 | 99.9 | 5 |
| 0 | 0 | 6 | 1949999 | 12 | -1.6 | 426 | 718 | 0.999991219 | 0.099991814 | 1.221189999 | 99.9 | 6 |
| 0 | 0 | 7 | 1949999 | 118 | -1.9 | 533 | 839 | 1.299991341 | 0.199991918 | 1.222129999 | 99.9 | 7 |
| 0 | 0 | 8 | 1949999 | 215 | -2.2 | 630 | 938 | 1.599991455 | 0.199992020 | 1.223049999 | 99.9 | 8 |
| 0 | 0 | 9 | 1949999 | 308 | -2.4 | 7201026 | 1.799991556 | 0.199992111 | 1.323549999 | 99.9 | 9 | |
| 0 | 010 | 1949999 | 355 | -2.5 | 8031105 | 1.899991639 | 0.099992158 | 1.499999999 | 99.9 | 10 | | |

8.5. NTP4: The Tide Predictions Program

ntp4 predicts the timing and height of the tides for Table 1 of the NOS Tide Tables. The original program has been documented in greater detail by Pore and Cummings (1967). The program accesses an ASCII file which contains astronomical tidal parameters for each year from 1901 to 2025. To run ntp4 in a Unix environment:

```
ntp4-inputfile
```

Sample inputfile:

| CLEARWATER BEACH | | | E724 | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 3363 | 1 | 311 | | | | | | |
| | 1 | 7983386 | 3063516 | 1553363 | 5132967 | 291515 | 4822942 | 6304 |
| | 2 | 101342 | 82817 | 111361 | 353247 | 12201 | 73308 | 373312 |
| | 3 | 212909 | 5531 | 47186 | 232877 | 313023 | 00 | 92627 |
| | 4 | 2811474 | 00 | 00 | 252737 | 1002853 | 153221 | 72810 |
| | 5 | 72536 | 1702949 | 102784 | 12773 | 143550 | 17887 | 853446 |
| | 6 | 12006 | 201671 | | | | | |
| 1990 | | | | | | | | |
| 0 | 0 | 0 | | | | | | |

The first line gives station identifying information. The second line begins with the datum (mean sea level - mean lower low water in feet) in the format f6.3, followed by four parameters (format 4 i 2) set to 1311 . The next six lines contain the constituents in standard predictions format (feet and kappa prime) obtained from a harmonic analysis program. The next line contains the year for which predictions are to be made (format i4). The next line is blank if the whole year is to be predicted. The last line is three zeros in the format $3 i 4$. Output will be in a file named 13. Output times are in local time and water levels are in feet. Times of 9999 and water levels of 99.9 are used as filler. The program will indicate if there are any "trouble days". This occurs when there are more than five high and low waters in a day. The user must decide which phase(s) to edit out to reduce the number of high and low waters to five for that day.

Sample output file 13 :

| 90 | 0 | 1 | 190 | 102 | 4.4 | 820 | 1.6 | 1458 | 3.8 | 2020 | 2.6 | 99999 | 99.9 | 1 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 90 | 0 | 2 | 190 | 159 | 4.1 | 855 | 1.9 | 1532 | 3.9 | 2126 | 2.4 | 99999 | 99.9 | 2 |
| 90 | 0 | 3 | 190 | 312 | 3.7 | 927 | 2.2 | 1605 | 4.1 | 2248 | 2.2 | 9999 | 99.9 | 3 |
| 90 | 0 | 4 | 190 | 439 | 3.4 | 1003 | 2.6 | 1647 | 4.2 | 9999 | 99.9 | 9999 | 99.9 | 4 |
| 91 | 0 | 5 | 190 | 18 | 1.9 | 635 | 3.2 | 1051 | 2.9 | 1737 | 4.4 | 99999 | 99.9 | 4 |
| 91 | 0 | 6 | 190 | 134 | 1.6 | 901 | 3.2 | 1207 | 3.1 | 1837 | 4.5 | 9999 | 99.9 | 6 |
| 91 | 0 | 7 | 190 | 243 | 1.3 | 1030 | 3.4 | 1331 | 3.2 | 1943 | 4.6 | 9999 | 99.9 | 7 |
| 91 | 0 | 8 | 190 | 341 | 1.0 | 1115 | 3.5 | 1443 | 3.2 | 2048 | 4.8 | 9999 | 99.9 | 8 |
| 91 | 0 | 9 | 190 | 431 | .8 | 1154 | 3.5 | 1539 | 3.1 | 2140 | 4.9 | 99999 | 99.9 | 8 |
| 91 | 0 | 10 | 190 | 516 | .8 | 1221 | 3.5 | 1627 | 3.0 | 2229 | 4.9 | 99999 | 99.9 | 9 |

8.6. Converting the Format of Tidal Current Constituents

Convert is an program designed to produce output files in the format required by the Products and Services Division. The harmonic analysis programs harm29, harm15, and Isqha produce output files with tidal constituents in standard predictions format parallel and perpendicular to the principal current direction. However, the constituent amplitudes may be in cm / s and the phases will be modified local epochs (6'). PSD requires that the constituents be delivered with the amplitudes in knots and the phases as local epochs (6).

The input file for convert consists of the cons.out file created by the harmonic analysis programs with tidal current constituents parallel and perpendicular to the principal current direction. Three output files are created by convert distinguished by the extensions *.kap, *.kpr, and *.elp.

The first output file (${ }^{*} . k a p$) contains the constituents in standard predictions format in knots and local epochs (6). The second output file (${ }^{*} . k p r$) contains the constituents in standard predictions format in knots and modified local epochs (6^{\prime}). This file is useful for running the tidal current prediction program ncp2.

The third output file (*.elp) contains the constituents in an easy-to-read tabular format in knots and local epochs (6) parallel and perpendicular to the principal current direction and parallel and perpendicular to the major axis of each constituent's tidal ellipse. It also contains the name of the project, the station number and name, the station location, the bottom depth and analysis depth, the principal current direction, the speed and direction of the permanent current, and a table of Greenwich intervals.

The following pages show sample input and output files and how to run the program interactively. It is important that the longitude of the station, the time meridian of the station, and the principal current direction be correct when running convert for the local epochs (6) to be calculated accurately. The other information requested by convert can be filled in with any numbers if unknown and changed later by editing the *.elp file.

Interactive execution of the program is shown below. Gray shading indicates user input.

```
    Enter the Input constituents file
02cons
    Enter the averaged output constituents file
egmont
    Enter the name of the project
Tampa Bay Oceanography Project
    Enter the station number, name, and time period
C-2 Inner Egmont Channel 8/20/90 - 9/22/91
    Enter station location as -- latitude degrees, decimal
    minutes, (west) longitude degrees, decimal minutes
27 36.26 82 45.62
    Enter time meridian (75 for EST, }90\mathrm{ for CST, }120\mathrm{ for PST)
75
    Enter the bottom depth and depth of station below mllw (feet)
82.9 15
```

```
    Enter the principal current direction (no decimal)
118
    Are input tidal constituents already in knots (y or n)?
n
    Enter the computed Greenwich Intervals (hours) in this order:
    Slack before flood, flood, slack before ebb, ebb
1.28 4.25 7.19 10.20
    Enter the mean speeds (cm/s) in the same order
1.492 67.186 3.550 68.884
    Enter the mean directions (degrees) in the same order
203 120 32 298
```

Alternatively, the program convert can also be run with the following control file.

Sample *.kap output file (egmont.kap):

```
Tampa Bay Oceanography Project
C-2 Inner Egmont Channel 8/20/90 - 9/22/91
        35
\begin{tabular}{rrrrrrrrr}
1 & 10403153 & 3683262 & 1993054 & 6152439 & 483364 & 5202316 & 21528 \\
2 & 0 & 0 & 202437 & 0 & 0 & 393067 & 21428 & 0 \\
3 & 222564 & 73202 & 0 & 0 & 372378 & 412501 & 0 & 0 \\
4 & 0 & 0 & 0 & 0 & 0 & 0 & 202263 & 1002254 \\
5 & 132193 & 2042429 & 0 & 0 & 0 & 0 & 283258 & 0 \\
6 & 52235054 & 0 & 0 & 1003271
\end{tabular}
Tampa Bay Oceanography Project
C-2 Inner Egmont Channel 8/20/90 - 9/22/91
        2
\begin{tabular}{rrrrrrrrrr}
1 & 492434 & 182497 & 82185 & 331173 & 82804 & 27 & 973 & 92586 \\
2 & 0 & 0 & 22560 & 0 & 0 & 22242 & 31152 & 0 & 0 \\
3 & 11375 & 0 & 0 & 0 & 0 & 21075 & 21269 & 0 & 0 \\
4 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 875 & 4857 \\
5 & 0 & 0 & 111161 & 0 & 0 & 0 & 0 & 12185 & 0 \\
6 & 3 & 976 & 0 & 0 & & & & 0 & 0 \\
0
\end{tabular}
```


SAMPLE *.KPR OUTPUT FILE (EGMONT.KPR):

```
Tampa Bay Oceanography Project
C-2 Inner Egmont Channel 8/20/90 - 9/22/91
    35
\begin{tabular}{rrrrrrrrrr}
1 & 10403359 & 3683417 & 1993287 & 6152514 & 48176 & 5202446 & 22146 \\
2 & 0 & 0 & 202748 & 0 & 0 & 393297 & 21893 & 0 & 0 \\
3 & 222585 & 73384 & 0 & 0 & 372481 & 412549 & 0 & 0 & 0 \\
4 & 0 & 0 & 0 & 0 & 0 & 0 & 202417 & 1002412 & 223415 \\
5 & 132378 & 2042509 & 0 & 0 & 0 & 0 & 283233 & 0 & 0 \\
6 & 53049 & 0 & 0 & & & & 003422
\end{tabular}
Tampa Bay Oceanography Project
C-2 Inner Egmont Channel 8/20/90 - 9/22/91
    2
\begin{tabular}{lrrrrrrrrr}
1 & 492640 & 182652 & 82418 & 331249 & 83216 & 271104 & 93204 \\
2 & 0 & 0 & 22871 & 0 & 0 & 22472 & 31617 & 0 & 0 \\
3 & 11395 & 0 & 0 & 0 & 0 & 21178 & 21317 & 0 & 0 \\
4 & 0 & 0 & 0 & 0 & 0 & 0 & 11029 & 41014 & 0 \\
5 & 0 & 0 & 111240 & 0 & 0 & 0 & 0 & 12361 & 0 \\
6 & 31800 & 0 & 0 & & & & 0 & 0 & 52655
\end{tabular}
```


Sample *.elp output file (egmont.elp):

ACKNOWLEDGMENTS

Much of the work toward the development of this document was completed while the author was a part of the Coastal and Estuarine Oceanography Branch and later the Coast Survey Development Laboratory and was supported by Dr. Bruce Parker. This document was significantly improved by suggestions and reviews from Dr. Bruce Parker, Geoffrey French, Karen Earwaker, Richard Bourgerie, Peter Stone, Dr. Kurt Hess, Dr. Hsing-hua Shih, Dr. Eugene Wei, Dr. William O'Connor, and Dr. John Shultz.

The following table gives the names of the original authors of the computer programs described in this document and those who have revised the programs over the years.

| Program | Original Author(s) | Revisions |
| :--- | :--- | :--- |
| LSQHA | D. Harris, N. Pore, R.
 Cummings | E. Long, J. Fancher, B. Parker, L.
 Hickman, G. French, C. Zervas |
| HARM29 and HARM15 | R. Dennis, E. Long | B. Parker, L. Hickman, C. Zervas |
| PRED | N. Pore, R. Cummings | B. Parker, G. French, L.
 Hickman, T. Bethem, C. Zervas |
| GI | C. Sun, C. Zervas | |
| GIPLOT | C. Zervas | |
| REVRED | B. Parker | C. Zervas |
| ROTARY | B. Parker | S. Hahn, C. Zervas |
| PRCMP | W. Wilmot | C. Zervas |
| GAP | C. Zervas | |
| AVCONS | C. Zervas | |
| NCP2 | N. Pore, R. Cummings | G. French, L. Hickman |
| NTP4 | N. Pore, R. Cummings | G. French, L. Hickman |
| CONVERT | C. Zervas | |

REFERENCES

Dennis, R. E., and E. E. Long, 1971. A user's guide to a computer program for harmonic analysis of data at tidal frequencies, NOAA Technical Report, NOS 41, 31 pp .

Harris, D. L., N. A. Pore, and R. A. Cummings, 1963. The application of high speed computers to practical tidal problems, Abstracts of papers, Vol. 6, IAPO, XIII General Assembly, IUGG, Berkeley, CA, VI-16.

Harris, D. L., N. A. Pore, and R. A. Cummings, 1965. Tide and tidal current prediction by high speed digital computer, International Hydrographic Review, Vol. XLII, No. 1, 95-103.

Preisendorfer, R. W., 1988. Principal Component Analysis in Meteorology and Oceanography, Elsevier, New York, NY, 425 pp.

Pore, N. A., and R. A. Cummings, 1967. A FORTRAN program for the calculation of hourly values of astronomical tide and time and height of high and low water, Weather Bureau Technical Memorandum TDL-6, U.S. Department of Commerce, Environmental Science Services Administration, 11 pp .

Schureman, P., 1958. Manual of harmonic analysis and prediction of tides, Special Publication No. 98, U.S. Department of Commerce, Coast and Geodetic Survey, Washington, D.C., 317 pp.

